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Phonetic forced alignment can greatly expedite spoken language analysis by 
providing automatic time alignments at the word- and phone-levels. In the case of 
low-resource languages, it remains an open question whether phone-level forced 
alignment will be more successful with a small language-specific acoustic model 
or a high-resource cross-language acoustic model. The present study directly 
compared language-specific and cross-language acoustic models in forced 
alignment performance using the Urum and Evenki datasets from the DoReCo 
Corpus. We evaluated six language-specific acoustic models trained with 5, 10, 
15, 20, 25, or approximately 70 minutes of language-specific speech data against 
four English-based cross-language acoustic models that differed in size and accent 
homogeneity (large Global English or homogeneous American English of varying 
data amounts). Acoustic models were developed or obtained from the Montreal 
Forced Aligner and evaluated against held-out manually aligned phone 
boundaries. Overall, the Global English model and the larger language-specific 
acoustic models were competitive with one another and outperformed the 
homogeneous cross-language and smaller language-specific acoustic models. 
From this analysis, we recommend that researchers use a language-specific model 
with at least 25 minutes of speech (not just audio) or a large, diverse cross-
language acoustic model for low-resource forced alignment. 
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1. Introduction1 
Access to diverse, multilingual spoken language data has risen considerably in recent years, in large part due to 
increased computational capacity. Diverse spoken language data has come from traditional fieldwork sources, 
compilations of prepared large-scale read speech recordings (e.g., Panayotov et al. 2015; Black 2019), as well as 
large-scale crowdsourced datasets, where speakers may contribute spoken data via a computer or smartphone 
(Ardila et al. 2019). Phonetic analysis of spoken language data can benefit substantially from a time alignment of the 
speech transcript to the audio file at the utterance-level and ideally also the word- and phone-levels. Time 
alignments facilitate subsequent language documentation at all levels of analysis, allowing researchers to efficiently 
locate segments of interest. Several methods currently exist for locating segments of interest within an audio file, 
including phonetic forced alignment, keyword spotting, and automatic speech recognition (ASR; Foley et al. 2018; 
Le Ferrand et al. 2020; Bird 2021; San et al. 2021; Coto-Solano 2022). Accurately labeling and aligning audio files 
from fieldwork, prepared, or crowdsourced datasets have tremendous implications for advances in linguistic 
research, community resource development, and the development of language-related tools (e.g., text and speech 
technology, language documentation, tools for language learning). 
 
In the present study, we focus on phonetic forced alignment, in which an acoustic model of a language’s phone set is 
used to identify the boundaries of each phone in its expected sequence based on the speech transcript. In contrast to 
manual segmental alignment, forced alignment is estimated to be anywhere from 200 to 400 times faster (Yuan et al. 
2013; Young & McGarrah 2023). This technique has become increasingly important for phoneticians, where 
acoustic-phonetic analyses are conducted on spoken data collected in the field, in a sound booth, or using 
crowdsourced methodologies (Leemann et al. 2016; Stuart-Smith et al. 2019; Paschen et al. 2020a; Salesky et al. 
2020; Ahn & Chodroff 2022; Hutin & Allassonnière-Tang 2022; Zhao & Chodroff 2022). Resulting analyses 
advance our empirical and theoretical understanding of phonetic realization across individual talkers, dialects, and 
languages. 
 
Phonetic forced alignment is widely used for “high-resource” languages, where considerable data exists for training 
the necessary acoustic models (e.g., English). Moreover, several researchers have demonstrated the efficacy of 
“cross-language forced alignment”, in which high-resource acoustic models such as English are used to align low-
resource languages. In cases when available data is particularly low (e.g., <2 hours), as in many fieldwork situations, 
it is uncertain how language-specific acoustic models compare to higher-resource cross-language acoustic models in 
terms of performance. While cross-language models benefit from greater amounts of training data, language-specific 
models may benefit from more precise acoustic exposure. In the present study, we directly compared small 
language-specific acoustic models against cross-language acoustic models for phonetic forced alignment of low-
resource languages. The small language-specific acoustic models represent a common scenario in speech resource 
development in a fieldwork setting: speech data is available but with limited amounts of transcribed data. The cross-
language models include a pretrained Global English model (the english_mfa 2.0.0a model from the Montreal 
Forced Aligner (MFA): McAuliffe & Sonderegger 2022b) with over 3000 hours of training data, as well as acoustic 
models developed using varying amounts of American English, representing a more homogeneous but high-resource 
source of speech data.   
 
2. Background 
2.1. Forced alignment systems 
Phoneticians have most extensively relied on forced alignment systems such as the Montreal Forced Aligner (MFA; 
McAuliffe et al. 2017), Gentle (Ochshorn & Hawkins 2017), MAUS and WebMAUS (Schiel 1999; Kisler et al. 
2017), the Prosodylab-Aligner (Gorman et al. 2011), FAVE (Rosenfelder et al. 2022), the Penn Forced Aligner 
(Yuan & Liberman 2008), the Language, Brain and Behaviour: Corpus Analysis Tool (LaBB-CAT; Fromont & Hay 
2012), or easyAlign (Goldman 2011). Several of these systems use a GMM-HMM architecture, where the expected 
sequence of phonetic segments (henceforth ‘phones’) can be modeled with a Hidden Markov Model (HMM), and 
their corresponding acoustic properties with a Gaussian Mixture Model (GMM). These systems commonly employ 
automatic speech recognition toolkits such as the Kaldi Speech Recognition Toolkit (Povey et al. 2011) for MFA 
and Gentle and the HTK Toolkit (Young et al. 2002) for Prosodylab-Aligner and FAVE to create a usable pretrained 

 
1 We wish to thank Michael McAuliffe for his active maintenance of the Montreal Forced Aligner and for his help along the way. We also thank 
Matt Kelley, Gina-Anne Levow, Richard Wright, Yossi Keshet, Catalina Torres, the Phonetics and Speech Sciences Group at the University of 
Zurich, and two anonymous reviewers for helpful discussion and feedback. This work was supported by grant PR00P1_208460 from the Swiss 
National Science Foundation. All data and code are available at the following OSF repository: https://osf.io/4598c/.  

https://osf.io/4598c/
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acoustic model for phonetic forced alignment.2 Each system minimally offers the user an American English acoustic 
model, with many offering a slightly wider range of acoustic models for different languages.   
 
Training an acoustic model has traditionally required computational power, speech data, and the know-how to train 
an acoustic model. For several years, the available acoustic models covered only a handful of the world’s languages, 
and the alignment algorithm was frequently associated with a particular language. For instance, FAVE and the Penn 
Forced Aligner employed an acoustic model trained on American English from the SCOTUS Corpus (Yuan & 
Liberman 2008; Rosenfelder et al. 2022); the original version of the MFA relied on an acoustic model trained on 
American English from the Librispeech Corpus (Panayotov et al. 2015; McAuliffe et al. 2017), and MAUS was 
originally developed using spoken German data (Schiel 1999). 
 
The availability of language-specific models has recently expanded as cross-linguistic speech corpora have become 
more readily accessible. Several language-specific acoustic models are now currently available through WebMAUS 
and the MFA, and have been trained on speech corpora such as GlobalPhone, Common Voice, among others (Strunk 
et al. 2014; McAuliffe et al. 2017; Kisler et al. 2017; Ahn & Chodroff 2022). Moreover, toolkits such as the MFA or 
the Prosodylab-Aligner have enabled speech researchers to train – with relative ease – acoustic models for phonetic 
forced alignment on their own language-specific data using their own computer. In a fieldwork setting, language-
specific acoustic models have been developed for Matukar Panau using the MFA (Gonzalez et al. 2018; Barth et al. 
2020), Eastern Chatino using the Prosodylab-aligner and eSpeak (Ćavar et al. 2016), Mboshi using custom tools in 
STK (Synthesis ToolKit in C++; Cook & Scavone 1999; Mitkov 2014; Godard et al. 2018), and Tongan using the 
Prosodylab-Aligner (Johnson et al. 2018). Additional language-specific acoustic models have also been developed 
directly using the Kaldi Speech Recognition Toolkit (Dias et al. 2020) or using more recent end-to-end ASR systems 
(Biczysko 2022; Zhu et al. 2022). 
 
2.2. Development of acoustic models: how much data is necessary? 
McAuliffe (2021) conducted a comparison of training set sizes for forced alignment using the Buckeye Corpus of 
American English (Pitt et al. 2005). The Buckeye Corpus contains about 16.5 hours of true speech (pauses dropped) 
from 40 speakers, and has the convenient property of being manually aligned at the phone level. Training sets were 
varied in terms of number of speakers in the mixture, which also corresponded to the overall duration of the training 
set. When testing on the training data (not an uncommon situation when a researcher simply needs a best-fit 
alignment), word boundary errors, as measured by distance to annotated time point, were generally on target from 
even the smallest training sizes, but variance decreased as the training size increased. In examining phone boundary 
errors in selected CVC words, the error was variable with smaller training sizes but was not far off from ceiling 
around the five to ten speaker mark (around three to five hours of speech). In terms of model generalization to new 
data, both word and phone boundary errors were fairly high until around 20 speakers (around eight to ten hours of 
speech).  
 
When fitting directly to the data, it was thus recommended to have three to five hours of speech; for generalizing to 
similar data, it was recommended to have around eight to ten hours of speech. Though the analysis was quite 
thorough, the study only investigated the training and generalization on American English speech with limited 
investigation beyond the Buckeye Corpus. It remains to be seen whether such figures might also hold for other 
languages.  
 
Critically, however, even three hours of training data may not even exist for some languages. In those cases, should 
we still attempt to train an acoustic model on the available data? Alternatively, would it be better to use cross-
language forced alignment using an acoustic model trained on considerably more data from another language?  
 
2.3. Cross-language forced alignment 
An alternative to language-specific acoustic models is cross-language forced alignment. Given limited accessibility 
to training algorithms or just limited language-specific training data, it has been common to use pretrained acoustic 
models on other dialects and even language varieties. Language-specific phone labels can be mapped to labels in the 
high-resource pretrained phone set, and then back again following forced alignment. These studies have benefited 

 
2 The HTK toolkit is no longer compatible with modern computer operating systems, which has resulted in a decline in the use of the Prosodylab-
aligner, FAVE, and the Penn Forced Aligner. 
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from the large amounts of training data available for high resource languages like American English, French, or 
Italian, and have used these acoustic models as substitute acoustic models for a different language.  
 
The majority of cross-language forced alignment scenarios have involved American English acoustic models. 
American English has been used to align other varieties of English, including British English (MacKenzie & Turton 
2020), Australian English (Gonzalez et al. 2020), and several creoles with varying English influence (North 
Australian Kriol: Jones et al. 2019; Bequia Creole: Walker & Meyerhoff 2020). More notably, American English 
has also been used to align typologically distinct languages such as Mixtec (DiCanio et al. 2013), Nikyob (Kempton 
2017), Bribri (Solórzano & Coto-Solano 2017), Cooks Islands Maori (Coto-Solano et al. 2018), Yidiny (Babinski et 
al. 2019), Matukar Panau (Barth et al. 2020), various Uralic languages (Leinonen et al. 2021), Nordic languages 
(Young & McGarrah 2023), and many others (e.g., Sim & Li 2008; Kurtić et al. 2012; Johnson et al. 2018). 
 
In some cases, researchers may identify an alternative high resource language that could serve as a better substitute 
model for the language at hand. For instance, French acoustic models have been used to align Bribri (Solórzano & 
Coto-Solano 2017) and Italian acoustic models have been used to align North Australian Kriol (Jones et al. 2019). 
Bribri alignments generated from an American English-based system were generally more precise compared to the 
French-based system (Solórzano & Coto-Solano 2017). Though both systems employed an HTK architecture, the 
exact system architectures (English FAVE vs French EasyAlign), amount of training data, and choice of phone 
mappings also differed between the two languages, making it difficult to isolate the source of the performance 
difference. North Australian Kriol was also more accurately aligned with an Italian acoustic model compared to a 
multilingual acoustic model available through MAUS (Jones et al. 2019). Though North Australian Kriol is an 
English-based creole, Italian was chosen in this case given its similarly transparent orthography, its similar vowel 
system, and the similar spontaneous speech style to the data collected in fieldwork. Finally, Tang & Bennett (2019) 
pooled data from two related Mayan languages, Kaqchikel and Uspanteko, to increase sample size in a variation of 
cross-language phonetic alignment. 
 
3. Methods 
To evaluate the quality of forced alignment produced by language-specific or cross-language acoustic models, the 
present analysis tested acoustic models from the MFA on data available through DoReCO – Language 
Documentation Reference Corpora (Paschen et al. 2020b). While a wide range of forced aligners are available, we 
chose the MFA for a few reasons: first, it builds on a high-quality ASR toolkit, Kaldi, that enables custom acoustic 
model training; second, it is user-friendly, and third, it includes a very large, pretrained Global English acoustic 
model that we could use in our cross-language comparisons. Finally, the system performs consistently well against 
other forced alignment systems (Mahr et al. 2021). 
 
For the data, we employed two of the larger language datasets available through DoReCo, Urum (Turkic; 
approximately 96 min of speech; Skopeteas et al. 2022) and Evenki (Tungusic; approximately 83 min of speech; 
Kazakevich & Klyachko 2022), which both contained recordings of personal or traditional narratives provided in a 
spontaneous to semi-spontaneous manner. DoReCo proved a useful starting point for our investigation given its 
online accessibility, representativeness for standard fieldwork data, and the availability of manually-aligned word 
boundaries which facilitated the manual phone-level alignments for the gold data. 
 
3.1. Datasets 
Urum is a Turkic language spoken in Georgia and southern Ukraine by approximately 171,000 speakers (Eberhard 
et al. 2023). The Urum dataset contained approximately 96 minutes of speech from 30 speakers in 132 audio files 
and was collected in Georgia around 2005 (Skopeteas et al. 2022).3 Based on the phonetic transcription provided 
with the corpus, the Urum phonetic inventory has 30 consonants and 9 vowels (Table 1). 

 

 
3 Speech duration was estimated from the sum of the manually aligned word boundaries provided in the DoReCo Corpus. 
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Table 1. Phone mapping for Urum with the English model 
Urum phones that stayed  

the same 
Urum phones that were mapped to 

English phones 
a, æ, e, i, o, u,  
j, l, ɫ, ɾ, m, n,  
v, z, ʒ, f, s, ʃ, 

b, d, d͡ʒ, ɟ, ɡ, p, t, t͡ ʃ, c, k 

œ to o, ɯ to u, y to u, 
lː to l, r to ɹ, mː to m, 
ɣ to h, sː to s, x to h,  

dː to d, tː to t 
 
Evenki is a Tungusic language spoken in Russia, China, and Mongolia by approximately 16,830 speakers (Eberhard 
et al. 2023). The Evenki dataset contained approximately 83 minutes of speech from 23 speakers in 36 audio files 
(Kazakevich & Klyachko 2022). Based on the phonetic transcription provided with the corpus, the Evenki phonetic 
inventory has 28 consonants and 13 vowels (Table 2). 
 

Table 2. Phone mapping for Evenki with the English model 
Evenki phones that stayed  

the same 
Evenki phones that were mapped to 

English phones 
a, aː, e, ə, o, i, iː, u,  

j, w, l, m, n, ŋ, 
v, z, ʒ, f, s, ʃ, h, 
b, d, ɡ, p, t, t͡ ʃ, k 

eː to e, əː to ə, oː to o, uː to u, ʉ to u, 
lʲ to l, r to ɹ, nʲ to ɲ,  
ɣ to h, sʲ to ʃ, ʃʲ to ʃ,  

dʲ to ɟ, tʲ to c 
 
In the DoReCo release for each language, foreign material, false starts, filled pauses, unidentifiable material, and 
prolongations were marked with brackets, followed by an orthographic representation of the spoken segment. 
Foreign material for both Urum and Evenki was almost always Russian. If any transcription followed the bracketed 
annotation, it was given a Romanized transliteration. We converted these segments to pronunciations using the same 
grapheme-to-phoneme system as the remainder of the corpus.  
 
The conversion from orthography to pronunciation was done semi-automatically. In the case of prolongations with 
transcribed material, the automated pronunciation was sometimes incorrect as the transcriber frequently entered the 
word multiple times in a row, even if it was said only once. These cases accounted for less than 1% of the listed 
word types, and by token count, were even rarer. In Urum, digits were also given pronunciations by listening to the 
audio file and using the same phone set as was already in the corpus; these were always in Russian. Critically, while 
these pronunciations were used for the purposes of training the acoustic model, any bracketed segment or 
transcribed digit was excluded from the analysis of the test set.  
 
The Urum test set had approximately eight minutes of analyzable speech from 11 speakers (22 minutes of audio). 
The original amount of test data was originally higher (around 12 minutes); however, bracketed but transcribed 
segments, such as foreign material and false starts, were ultimately excluded. The test set was manually aligned at 
the phone level by two trained linguists. The Urum train set had 76 minutes of speech (including bracketed but 
transcribed segments) from 25 speakers (123 minutes of audio). Within the Urum dataset, one file was 
unintentionally excluded from the manually aligned test set, and two files were unintentionally excluded from the 
full train set. The numbers reported for the test and train sets already account for that exclusion. Seven of the 
speakers overlapped between train and test sets. Recording quality was generally marked as “good” (107/132) or 
“medium” (24/132), with only one instance of “bad” (1/132), as indicated in the metadata from DoReCo.  
Background noise was also minimal (no reported background noise: 47/132, punctual background noise: 74/132, 
constant background noise: 11/132). The test data contained only “good” (19/26) or “medium” (7/26) sound 
qualities with a mixture of background noise (none: 10/26, punctual: 15/26, constant: 1/26).  
  
The Evenki test set was created with nine minutes of speech from five speakers (26 minutes of audio). (This was 
originally 11 minutes including the bracketed but transcribed material.) This was manually aligned at the phone 
level by two trained linguists. The full Evenki train set had 70 minutes of speech from 18 speakers (153 minutes of 
audio). None of the speakers overlapped between train and test sets. Recording quality varied considerably from 
impressionistic markings of “good” (13/36) to “medium” (19/36) to “bad” (4/36), as indicated in the DoReCo 
metadata. Background noise was present in most recordings (no reported background noise: 9/36, punctual 
background noise: 26/36, constant background noise: 1/36). The test data contained only “medium” sound qualities 
with punctual background noise (5/5). 
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3.2. Preparing the MFA input 
For the MFA input, we created a Praat TextGrid file for each wav file with the utterance-level alignment from the 
DoReCo release and the corresponding transcript. The pronunciation dictionary was obtained directly from the 
DoReCo data, which included a phonetic transcription for each word. Inspection of the data suggested that the 
original authors of both datasets used a rule-based grapheme-to-phoneme (G2P) system to convert the orthography 
to a phonetic transcription. Foreign words (always Russian from our assessment for both Urum and Evenki), false 
starts, and prolonged words were then assigned phonetic transcriptions using approximately the same G2P mapping 
for the primary language. In these cases, we found that the Russian transliteration followed a similar G2P mapping 
as the Urum and Evenki orthographies. Nevertheless, any word with this type of marking was excluded from 
evaluation: these words were thus included in the training material and present for alignment but were not included 
in any of the evaluations. Within the test data, the median proportion of removed segments per utterance 
(“contamination” in the input utterance) was 0.33 for Urum and 0.20 for Evenki. 
 
3.3. Acoustic models 
To compare low-resource language-specific and cross-language forced alignment, we wanted a representative 
sample of acoustic models. A total of 30 language-specific acoustic models were created that were trained on 
approximately 5 to 25 minutes of true speech data in 5-minute increments with six subsets per duration level.  
The motivation for six subsets was somewhat arbitrary but allowed for sufficiently different mixtures of the training 
data at each duration level, with three subsets containing high speaker variability with many speakers present (e.g., 
5H1, 5H2, 5H3) and three subsets containing low speaker variability with few speakers present (e.g., 5L1, 5L2, 
5L3). The selection of data was mostly created anew for each duration level to best match the targeted duration: for 
example, 5H1 was not necessarily a full subset of 10H1. The language-specific acoustic models were each trained 
using the default parameters in the MFA v2 train algorithm (version 2.0.6). To reduce the number of comparisons in 
evaluation, we selected the median-performing language-specific acoustic models from each duration level: 5, 10, 
15, 20, or 25 minutes of training data. That is, among the six acoustic models per duration level (e.g., 5H1, 5H2, 
5H3, 5L1, 5L2, 5L3), the chosen acoustic model was ranked third in performance, as assessed via median boundary 
difference (see Section 3.4 for more details). An additional acoustic model was trained using the full train set for 
each language, which we refer to as the 70+ minute model (82 minutes for Urum and 70 minutes for Evenki). In 
total, there were six language-specific acoustic models (one each for the duration levels of 5, 10, 15, 20, 25 or 70+).   
Naturally, the amount of training data per tested phone differed across these acoustic models. The range and median 
number of tokens per phone can be found in Tables 3 and 4. For Urum, all 37 phones in the test set had a 
corresponding phone-specific model within each acoustic model ([lː] and [mː] did not appear in the test set). For 
Evenki, all but two of the 40 phones in the test set were present in the tested acoustic models: the 5-min model was 
missing a phone-specific model for [eː], and the 20-min model was missing a phone-specific model for [lʲ]. These 
phones, however, accounted for less than 0.025% of the test set.  
 

Table 3. Minimum, median, and maximum number of phone-specific training tokens for each 
Urum language-specific acoustic model.  

Model Min Median Max 
5 min 1 71 401 
10 min 5 156 899 
15 min 1 248 1465 
20 min 1 248 1465 
25 min 9 401 2187 

70+ min 34 1100 6632 
Though the 15-min and 20-min models have the same 

presented statistics, the distributions were indeed different. 
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Table 4. Minimum, median, and maximum number of phone-specific training tokens for each 
Evenki language-specific acoustic model.  

Model Min Median Max 
5 min 1 50 369 
10 min 3 125 699 
15 min 1 184 1161 
20 min 3 219 1727 
25 min 2 236 1494 

70+ min 20 776.5 5144 
 
 
Four cross-language acoustic models were evaluated in performance relative to the language-specific acoustic 
models. The cross-language models were a large Global English model (>3500 hours of Global English), a 100-hour 
American English model, a 10-hour American English model, and an American English model matched to the 
number of minutes in the full language-specific models (approximately 75 minutes of speech). 
 
The Global English model was available via the MFA repository of pretrained acoustic models (english_mfa 2.0.0a) 
and was trained on approximately 3700 hours of English spoken around the world (Global English; McAuliffe & 
Sonderegger 2022b). The training data for this model comes from Common Voice English v8.0 (2480 hours; Ardila 
et al. 2019), LibriSpeech English (982 hours; Panayotov et al. 2015), the Corpus of Regional African American 
Language v2021.07 (124 hours; Farrington & Kendall 2021), Google Nigerian English (6 hours; Butryna et al. 
2020), Google UK and Ireland English (31 hours; Demirsahin et al. 2020), NCHLT [South African] English (56 
hours; Barnard et al. 2014), and ARU [British] English (7 hours; Hopkins et al. 2019). Given the dialect variability, 
the resulting acoustic model has a diverse phone set and representation of speech variation. 
 
The three additional cross-language acoustic models were trained on American English speech from the LibriSpeech 
ASR Corpus (Panayotov et al. 2015), which contains read speech of audiobooks from mostly American English 
speakers. The pronunciation dictionary for these corpora was the Global English dictionary from the MFA 
(McAuliffe & Sonderegger 2022a). At the time of implementation, this was the default English dictionary with the 
MFA, and the only available English dictionary with IPA symbols.4 The American English acoustic models were 
trained using the default parameters in the MFA v2 train algorithm (versions 2.1.7, 2.2.3, and 2.2.11).5 The first 
American English dataset contained 100 hours of data from the LibriSpeech “clean” train dataset (Panayotov et al. 
2015).6 The second American English dataset contained 10 hours of speech from the same LibriSpeech “clean” train 
dataset. The third American English dataset was matched in the number of minutes to the full language-specific 
acoustic model (approximately 75 minutes). This dataset contained data from the LibriSpeech “clean” development 
dataset and had the same number of speakers and gender breakdown as the original Urum or Evenki full dataset. 
These datasets served as a more homogeneous representation of English and aimed to deconfound the amount of 
training data (number of hours or minutes) from the language input (American English vs language-specific). The 
100-hour sample represents a large, but phonetically homogeneous cross-language scenario. The 10-hour sample 
represents the recommended amount of training data for language-specific alignment (McAuliffe 2021), but in a 
homogeneous cross-language scenario. Finally, the matched sample deconfounds the amount of data from the 
language input, allowing us to understand the importance of language specificity. 
 
The language-specific pronunciation lexicon was obtained directly from the DoReCo phone transcriptions or from 
our application of grapheme-to-phoneme conversion. The cross-language pronunciation lexicon was obtained using 
the Interlingual MFA Toolkit (Dolatian 2023) by mapping the language-specific phones to English phones as 
specified in Tables 1 and 2. The symbols were then mapped back to their original symbols prior to evaluation. 
 

 
4 A few dialect-specific English acoustic models and dictionaries have since been made available. Though we could additionally test the influence 
of the precise phone specifications, we leave this analysis to future work. One advantage of the current approach is that the primary differences 
between the Global English and American English models is the audio data being used for training. 
5 The MFA v2 train algorithm did not change across these releases. 
6 “Clean” here indicates that the speech from these speakers was recognized with reasonably high accuracy by an automatic speech recognition 
system. 
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3.4. Evaluation 
The evaluation metrics were the percent data retention, the absolute difference between the aligned and gold 
boundary for phone onsets (MacKenzie & Turton 2020; Mahr et al. 2021), which we refer to as precision, and 
finally, the alignment accuracy (Mahr et al. 2021). 
 
Data retention refers to how many segments were aligned; in many cases, phone and word intervals are entirely 
skipped by the alignment interval if the performance is too poor. The percent data retention was calculated based on 
the number of successfully merged aligned and gold phone intervals divided by the expected number of gold phone 
intervals. Data retention was assessed descriptively as a first indicator of potential issues with model performance. 
Precision refers to the difference between the gold and aligned boundary of the phone onset (see also Solórzano & 
Coto-Solano 2017; McAuliffe et al. 2017; Gonzalez et al. 2020; Mathad et al. 2021 for a similar use of phone onset 
difference). Precision was assessed descriptively in terms of median rank absolute boundary difference as well as the 
percent of tokens per model with a boundary within 20 ms of the gold boundary. A linear mixed-effects model was 
then used to assess variability in the token-level absolute boundary difference in log seconds based on the acoustic 
model (always compared to the Global English model), input utterance duration, proportion of bracketed segments 
in the input utterance (“contamination”), natural class of the preceding segment (vowel, approximant, nasal, 
fricative, stop, or silence), natural class of the target segment (vowel, approximant, nasal, fricative, or stop), as well 
as the interactions between natural class of the preceding and target segments. A random intercept was included for 
audio file. Prior to the log transformation, any tokens equal to 0 were converted to 0.001 sec to avoid infinite values.  
Alignment accuracy was defined as whether the forced aligned interval contains the midpoint of the gold interval 
(Knowles et al. 2018; Mahr et al. 2021). Accuracy was assessed descriptively in terms of rank, followed by a logistic 
mixed-effects model for each language. The model structure was the same as for the boundary difference, but 
without the interactions between the natural classes of the preceding and target segments. (Further interactions led to 
non-convergence.) 
 
For the linear and logistic mixed-effects regressions, preceding and target natural class were sum-coded. For the six-
level natural class of the preceding segment, the held-out level was silence, and for the five-level natural class of the 
target segment, the held-out level was stops. Acoustic model was always treatment-coded with each model 
compared to the Global English 3700 hr model (American English 100 hr, American English 10 hr, American 
English 70+ min, 70+ min, 25 min, 20 min, 15 min, 10 min, 5 min). 
 
4. Results 
4.1. Retention 
As shown in Figure 1, retention was generally high across all acoustic models for both languages. No major patterns 
were observed between the cross-language and language-specific models. Retention was, however, consistently 
lower for the median-performing 5-minute models.  
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Figure 1. Segment retention as a percentage of the total number of gold segments for each acoustic model in a) 

Urum and b) Evenki. 
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4.2. Precision 
For both languages, the tested language-specific and cross-language acoustic models were fairly competitive with 
one another in terms of the median boundary difference and the percent of boundaries within 20 ms of the gold test 
boundary (Figure 2, Figure 3). The consistent exception was the median-performing 5-min model, which had a 
noticeably higher and more variable boundary difference for both languages, along with a remarkably low 
percentage of boundaries within 20 ms of gold (16% for Urum and 14% for Evenki). In addition, precision 
noticeably worsened across the 15-, 10-, and 5-min models for Evenki, whereas the most noticeable performance 
drop was from the 10-min model to the 5-min model for Urum. Across both languages, the top three performing 
models with respect to both precision metrics included the Global English 3700 hr model, the full language-specific 
model, and the median-performing 25-min model. Ceiling performance as assessed by agreement within 20 ms was 
at 69% for Urum and 60% for Evenki. 

 
Figure 2. Median and interquartile range of boundary differences in seconds for each tested acoustic model in a) 

Urum and b) Evenki. 
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Figure 3. The percent of force-aligned test boundaries within 20 ms of the gold test boundary for each tested 

acoustic model in a) Urum and b) Evenki. 
 
The linear mixed-effects models for Urum and Evenki revealed several significant effects.7 For Urum, only the full 
language-specific acoustic model was significantly more precise than the Global English acoustic model. Otherwise, 
the Global English model significantly outperformed the smaller language-specific models and the American 
English models. Longer input utterance durations also corresponded to significantly worse precision (Figure 4a). 
Higher contamination proportions per input utterance – that is, the proportion of bracketed segments due to foreign 
material, false starts, pauses, etc. – also significantly reduced precision. Several main effects and interactions of the 
targeted and preceding natural classes also reached significance. Significantly worse precision was observed for 
preceding vowels, approximants, and nasals, targeted approximants and nasals, as well as vowel–vowel, fricative–
fricative, approximant–fricative, and nasal–approximant sequences. Significantly better precision was found for 
targeted fricatives, vowel–nasal, approximant–nasal, nasal–vowel, nasal–nasal, fricative–vowel, fricative–nasal, 
stop–vowel, and stop–nasal sequences.  
 
For Evenki, the Global English model outperformed all language-specific models and American English models 
with respect to precision. As with Urum, longer utterance durations corresponded to significantly worse precision 

 
7 The full model results for Urum and Evenki precision can be found in the Appendix. 
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(Figure 4b), as did greater amounts of bracketed material within the input utterance. Several main effects and 
interactions of the targeted and preceding natural classes were also observed. Similar to Urum, preceding vowels, 
approximants, and nasals, as well as targeted approximants corresponded to significantly worse precision of the 
boundary. In contrast to Urum, targeted fricatives as well as preceding fricatives corresponded to significantly worse 
precision in Evenki. Significantly lower precision was also observed for vowel–vowel, nasal–nasal, vowel–nasal, 
and stop–nasal sequences. Significantly better precision was observed for targeted vowels, targeted nasals, as well as 
vowel–approximant, vowel–fricative, approximant–approximant, nasal–fricative, stop–vowel, and stop–fricative 
sequences.  

 
Figure 4. The relationship between precision (mean boundary difference in seconds) and input utterance duration in 

seconds across the tested acoustic models in a) Urum and b) Evenki. The x-axis has been truncated to 10 sec for 
better visibility. 
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for Evenki, the 10- and 15-minute models as well (Figure 5). The top three acoustic models always included the 
Global English model, the full language-specific model, and the median-performing 25-min model.  
 
The pattern of significance observed in the logistic mixed-effects models for both Urum and Evenki was largely 
comparable to the pattern observed for precision. For Urum, the full language-specific model significantly 
outperformed the Global English model; otherwise, the Global English model significantly outperformed all other 
language-specific and cross-language models. Increased utterance durations and higher contamination proportions 
(bracketed material per utterance) also corresponded to significantly worse accuracy. Significantly worse accuracy 
was also associated with preceding vowels, approximants, and nasals, as well as targeted vowels, approximants, and 
nasals. Preceding and targeted fricatives, however, corresponded to significantly better accuracy.  
For Evenki, the Global English model significantly outperformed all language-specific and cross-language models 
in terms of accuracy. As with Urum, longer utterance durations and higher contamination proportions corresponded 
to significantly decreased accuracy. Preceding vowels, approximants, nasals, as well as targeted approximants were 
also associated with decreased accuracy. In contrast to Urum, significantly worse accuracy was associated with 
preceding and targeted fricatives, whereas significantly better accuracy was associated with preceding stops and 
targeted vowels.  
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Figure 5. Accuracy in identifying the aligned segment location relative to the gold segment location for each 

acoustic model in a) Urum and b) Evenki. 
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Nevertheless, ceiling performance in the cross-language or low-resource forced alignment approach was not 
remarkably high. With respect to boundary agreement within 20 ms, the highest percentage was 69% for Urum from 
the full model with 70+ minutes (66% for the Global English model) and 60% for Evenki from the Global English 
model (52% for the full model with 70+ minutes). Overall, alignment of Urum was numerically better than that of 
Evenki, which we suspect might be attributable to the better sound quality in the training and test data. Urum 
otherwise had slightly longer input utterance durations and greater amounts of false starts or foreign material relative 
to Evenki. In any case, comparison with similar cross-language or low-resource forced alignment studies suggests 
this range of performances may be on par with other results, especially taking into consideration that the speech here 
was connected as opposed to isolated. In cross-language forced alignment, DiCanio et al. (2013) reported a 61% 
agreement within 20 ms for Yoloxóchitl Mixtec connected speech using an American English Nemours SRL aligner 
(Yarrington et al. 2008) and 52% using the Penn Phonetics Lab Forced Aligner also trained on American English 
(Yuan & Liberman 2008). In addition, Kempton (2017) found a 66% agreement within 20 ms for Nikyob isolated 
words using a Czech phone recognizer. In low-resource forced alignment, Johnson et al. (2018) achieved 63%–71% 
agreement within 20 ms for Tongan speech using an acoustic model trained on one hour of data using the 
ProsodyLab-Aligner (Gorman et al. 2011). 
 
Overall, training a language-specific model with just 25 minutes of speech data was preferable to using a 
homogeneous cross-language model. Even though the American English models had considerably more training 
data than the language-specific ones, the homogeneity of the training data and its mismatch to the target language 
likely resulted in weaker alignment performance. It could be that American English specifically was a poor match 
for Urum and Evenki; further research should investigate how overlap between two languages' phoneme inventories 
and acoustics could influence results. Indeed, previous research has demonstrated worse alignment for phones 
without a one-to-one match in the cross-language setup (DiCanio et al. 2013; Babinski et al. 2019; Meer 2020). 
Moreover, researchers may benefit from using a large and diverse acoustic model, such as the Global English model 
used here for forced alignment. This model was always in the top two tested models, in both languages and for each 
tested measure. 
 
Phonetic forced alignment can be further improved by minimizing the input utterance duration and appropriately 
handling the presence of foreign, non-speech, and other extraneous material. Ceiling performance was not always 
particularly high, indicating a need for alternative approaches to improve retention, precision, and accuracy.  
Reducing the input interval duration, removing foreign speech or non-speech intervals, and recursive forced 
alignment approaches would likely improve the overall performance of the forced alignment procedure. Previous 
studies have demonstrated that recursive forced alignment can substantially improve alignment quality by 
automatically or semi-automatically reducing lengthy input durations into shorter and shorter intervals (Moreno et 
al. 1998; Gonzalez et al. 2018; Barth et al. 2020). The shorter aligned intervals are then recursively fed back into the 
forced alignment procedure for more precise alignments. Indeed, the present study found a significant influence of 
input utterance duration on the alignment quality in terms of precision for Evenki and accuracy for both Urum and 
Evenki.  
 
Given the success of the large, multidialectal acoustic model tested here, these findings also reveal a need to test 
truly multilingual models of varying training data sizes for low-resource phonetic forced alignment. Multilingual 
and language-independent acoustic models show considerable promise but have had limited availability. Strunk et 
al. (2014) included a multilingual model in their release of WebMAUS, which has successfully been used to force 
align fieldwork recordings in the DoReCo Corpus (Paschen et al. 2020b). The acoustic models employed in the 
present study did not allow us to deconfound multilinguality (or the presence of diverse accents) from the amount of 
training data: the large Global English model was trained on an incredibly large amount of data (around 3700 hours) 
from quite varied accents. It also remains to be seen if a single language acoustic model with considerably more 
data, e.g., with thousands of hours, could offer a better alternative than a multilingual model of similar size, 
particularly if the language similarity is high. 
 
In most fieldwork scenarios, however, large quantities of data are just not available. Relatedly, these recordings 
commonly involve conversations with code-switching, as was the case in the present study. Whether to use code-
switched speech for acoustic model training is another important topic for future work. The present study did 
employ such instances in training but excluded these for testing. Our speculation is that given the importance of data 
quantity, it would likely be helpful to include phone categories that overlap between the code-switched and target 
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language, as it would further increase the sample size. An additional point of consideration is the degree to which 
the recording and speech styles match between the train and test sets, which was relatively high in the present study.  
 
Finally, it will also be important to investigate how newer end-to-end systems such as wav2vec 2.0 (Baevski et al. 
2020) or Whisper (Radford et al. 2023) perform against HMM systems that have an explicit representation of a 
phone. Some work in this direction has found that HMM systems largely outperform systems based on wav2vec 2.0 
for word-level alignment (Biczysko 2022; Rousso et al. 2024), as well as phone-level alignment (Zhu et al. 2022), 
though the end-to-end approach is still competitive. Further investigation of the potential of these systems will be an 
important avenue of research for speech processing and analysis of low-resource languages. 
 
6. Recommendations and Conclusion 
Our first recommendation for phonetic forced alignment of low-resource languages is to use the large Global 
English acoustic model (or one that is similar) or a language-specific acoustic model with at least 25 minutes 
of speech, assuming the MFA or a comparable procedure is used for acoustic model training. This also assumes that 
the language-specific training data matches the style and general recording environment of the test data. 
The large Global English model was consistently competitive with the best-performing language-specific models of 
the durations tested here. This appears to be a highly reliable model for cross-language forced alignment. In 
addition, language-specific acoustic models with at least 25 minutes of speech data tended to perform near-ceiling 
for forced alignment. We must note, however, that we only tested the median-performing models from our initial 
pilot study, and it is still very possible that one gets unlucky with a particular 25-minute sample. Cross-language 
acoustic models trained on a relatively homogeneous dataset are unlikely to perform as well as an acoustic model 
trained directly on the language (assuming at least 25 minutes) or a large and highly diverse acoustic model.  
 
Our second recommendation for phonetic forced alignment more generally is to ensure a short input utterance. As a 
heuristic, we recommend an input utterance less than six seconds, and ideally less than two seconds. In our 
data, precision generally worsened with increased duration, but as can be seen in Figure 4, alignments could be 
considerably further off after around 6 seconds. Reducing the input utterance duration can involve a trade-off 
between manual and automatic processing, but the longer the utterance, the more numerous the errors are that then 
need to be manually corrected after alignment. Sequences of abnormally low segment durations could also be 
indicative of a poor alignment; it may be beneficial to target these sequences during manual auditing. For low-
resource alignment, recursive alignment to narrow the input utterance duration may also be worth the additional 
effort for increased precision and accuracy. 
 
To conclude, phonetic forced alignment can substantially facilitate downstream analysis of a spoken language 
corpus. For languages with no pretrained acoustic model, it has been unclear whether to proceed in phone-level 
forced alignment using cross-language forced alignment or to train a language-specific acoustic model on the 
available language-specific data. Our findings indicate that several factors can influence this decision, and results 
may still vary; however, performance appears to reach ceiling with either a large and diverse multidialectal model 
(e.g., the large Global English acoustic model) or with a language-specific acoustic model with at least 25 minutes 
of speech (and not just audio) with comparable style and recording quality. Additional factors such as reducing the 
input utterance duration can further improve performance. This method was implemented using the MFA; however, 
a comparison between cross-language and language-specific forced alignment could be extended to any forced 
alignment system. Further comparisons with multilingual acoustic models or even larger language-specific models 
could also benefit our understanding of best practices in cross-linguistic forced alignment. As always, the output of 
automatic phonetic forced alignment should ideally be audited prior to any analysis. 
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Table 5. Linear mixed-effects model results for boundary difference (log seconds) in Urum. Each listed model is 
compared to the Global English 3700 hr model. Utterance duration was entered as hectoseconds (hs) for model 

convergence (seconds / 100). The preceding and targeted natural class are sum-coded, such that the listed level can 
be compared to the average. For the preceding natural class, the held-out level is silence; for the targeted natural 

class, the held-out level is stops. 
Predictor Estimate CI p 

Intercept -4.86 -5.00 – -4.72 <0.001 

70+ min -0.10 -0.16 – -0.04 <0.001 

25 min 0.14 0.09 – 0.20 <0.001 

20 min 0.30 0.24 – 0.36 <0.001 

15 min 0.29 0.23 – 0.34 <0.001 

10 min 0.74 0.68 – 0.80 <0.001 

5 min 1.58 1.52 – 1.64 <0.001 

American English 100 hr 0.68 0.62 – 0.73 <0.001 

American English 10 hr 0.35 0.29 – 0.40 <0.001 

American English 70+ min 0.55 0.49 – 0.60 <0.001 

Utterance duration (hs) 2.12 1.56 – 2.68 <0.001 

Contamination amount 0.51 0.42 – 0.59 <0.001 

Preceding vowel      0.43 0.37 – 0.49 <0.001 

Preceding approximant 0.54 0.43 – 0.64 <0.001 

Preceding nasal      0.29 0.23 – 0.35 <0.001 

Preceding fricative  0.04 -0.10 – 0.17 0.587 

Preceding stop       0.09 -0.00 – 0.17 0.060 

Vowel -0.07 -0.16 – 0.02 0.116 

Approximant          0.19 0.06 – 0.31 0.003 

Nasal 0.09 0.01 – 0.18 0.026 

Fricative -0.23 -0.35 – -0.12 <0.001 

Prec vowel × vowel   0.19 0.08 – 0.30 0.001 

Prec vowel × approx  0.05 -0.09 – 0.20 0.460 

Prec vowel × nasal   -0.11 -0.20 – -0.01 0.023 

Prec vowel × fric    -0.05 -0.18 – 0.08 0.440 

Prec approx × vowel  -0.02 -0.16 – 0.11 0.723 

Prec approx × approx -0.21 -0.47 – 0.06 0.126 

Prec approx × nasal  -0.25 -0.39 – -0.11 <0.001 

Prec approx × fric   0.29 0.02 – 0.55 0.037 

Prec nasal × vowel   -0.14 -0.24 – -0.04 0.005 

Prec nasal × approx  0.14 0.00 – 0.28 0.042 

Prec nasal × nasal   -0.17 -0.26 – -0.08 <0.001 
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Prec nasal × fric    -0.04 -0.18 – 0.09 0.553 

Prec fric × vowel    -0.57 -0.74 – -0.41 <0.001 

Prec fric × nasal    -0.51 -0.68 – -0.35 <0.001 

Prec fric × fric     1.03 0.65 – 1.42 <0.001 

Prec stop × vowel    -0.40 -0.52 – -0.28 <0.001 

Prec stop × approx   0.09 -0.11 – 0.29 0.365 

Prec stop × nasal    -0.29 -0.41 – -0.17 <0.001 

Prec stop × fric     -0.10 -0.29 – 0.10 0.339 
 
 
 

Table 6. Linear mixed-effects model results for boundary difference (log seconds) in Evenki. Each listed model is 
compared to the Global English 3700 hr model. Utterance duration was entered as hectoseconds (hs) for model 

convergence (seconds / 100). The preceding and targeted natural class are sum-coded, such that the listed level can 
be compared to the average. For the preceding natural class, the held-out level is silence; for the targeted natural 

class, the held-out level is stops. 
 

Predictor Estimate CI p 

Intercept -4.67 -4.88 – -4.47 <0.001 

70+ min 0.22 0.17 – 0.28 <0.001 

25 min 0.31 0.26 – 0.37 <0.001 

20 min 0.43 0.38 – 0.49 <0.001 

15 min 0.99 0.93 – 1.04 <0.001 

10 min 1.63 1.57 – 1.69 <0.001 

5 min 2.07 2.01 – 2.13 <0.001 

American English 100 hr 0.91 0.85 – 0.96 <0.001 

American English 10 hr 0.49 0.44 – 0.55 <0.001 

American English 70+ min 0.61 0.55 – 0.66 <0.001 

Utterance duration (hs) 5.72 5.07 – 6.37 <0.001 

Contamination amount 0.01 -0.00 – 0.02 0.060 

Preceding vowel 0.39 0.32 – 0.46 <0.001 

Preceding approximant 0.60 0.47 – 0.72 <0.001 

Preceding nasal 0.27 0.15 – 0.40 <0.001 

Preceding fricative 0.35 0.14 – 0.56 0.001 

Preceding stop -0.04 -0.17 – 0.10 0.606 

Vowel -0.15 -0.23 – -0.07 <0.001 

Approximant 0.73 0.52 – 0.93 <0.001 

Nasal -0.20 -0.31 – -0.09 <0.001 

Fricative 0.21 0.11 – 0.32 <0.001 
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Prec vowel × vowel 0.39 0.27 – 0.52 <0.001 

Prec vowel × approx -0.61 -0.82 – -0.41 <0.001 

Prec vowel × nasal 0.15 0.03 – 0.26 0.012 

Prec vowel × fric -0.27 -0.40 – -0.14 <0.001 

Prec approx × vowel 0.04 -0.10 – 0.18 0.583 

Prec approx × approx -0.56 -0.81 – -0.31 <0.001 

Prec approx × nasal -0.11 -0.41 – 0.19 0.477 

Prec approx × fric 0.14 -0.20 – 0.47 0.429 

Prec nasal × vowel -0.01 -0.14 – 0.13 0.930 

Prec nasal × approx -0.39 -0.81 – 0.02 0.064 

Prec nasal × nasal 0.49 0.32 – 0.65 <0.001 

Prec nasal × fric -0.35 -0.58 – -0.12 0.003 

Prec fric × vowel -0.21 -0.42 – 0.01 0.064 

Prec fric × nasal -0.08 -0.50 – 0.35 0.730 

Prec fric × fric -0.15 -0.61 – 0.31 0.524 

Prec stop × vowel -0.30 -0.45 – -0.15 <0.001 

Prec stop × approx -0.39 -0.82 – 0.05 0.080 

Prec stop × nasal 0.50 0.23 – 0.77 <0.001 

Prec stop × fric -0.85 -1.11 – -0.59 <0.001 
 
 
  



 24 

Table 7. Logistic mixed-effects model results for accuracy in Urum. Accuracy was defined as 1 if the force aligned 
segments that contained the midpoint of the manually aligned segment. Each listed model is compared to the Global 
English 3700 hr model. Utterance duration was entered as hectoseconds (hs) for model convergence (seconds / 100). 

The preceding and targeted natural class are sum-coded, such that the listed level can be compared to the average. 
For the preceding natural class, the held-out level is silence; for the targeted natural class, the held-out level is stops. 
 

Predictor Log-Odds CI p 

Intercept 1.88 1.70 – 2.07 <0.001 

70+ min 0.19 0.09 – 0.28 <0.001 

25 min -0.04 -0.13 – 0.06 0.469 

20 min -0.25 -0.34 – -0.15 <0.001 

15 min -0.24 -0.34 – -0.15 <0.001 

10 min -1.13 -1.22 – -1.04 <0.001 

5 min -2.05 -2.14 – -1.96 <0.001 

American English 100 hr -1.01 -1.10 – -0.92 <0.001 

American English 10 hr -0.61 -0.70 – -0.52 <0.001 

American English 70+ min -0.74 -0.83 – -0.65 <0.001 

Utterance duration (hs) -1.24 -2.08 – -0.41 0.004 

Contamination amount -0.49 -0.61 – -0.37 <0.001 

Preceding vowel -0.36 -0.45 – -0.28 <0.001 

Preceding approximant -0.16 -0.27 – -0.05 0.003 

Preceding nasal -0.13 -0.21 – -0.05 0.002 

Preceding fricative 0.33 0.23 – 0.44 <0.001 

Preceding stop 0.05 -0.04 – 0.14 0.308 

Vowel -0.08 -0.12 – -0.04 <0.001 

Approximant -0.83 -0.89 – -0.77 <0.001 

Nasal -0.24 -0.27 – -0.20 <0.001 

Fricative 0.86 0.78 – 0.93 <0.001 
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Table 8. Logistic mixed-effects model results for accuracy in Evenki. Accuracy was defined as 1 if the force aligned 
segments that contained the midpoint of the manually aligned segment. Each listed model is compared to the Global 
English 3700 hr model. Utterance duration was entered as hectoseconds (hs) for model convergence (seconds / 100). 

The preceding and targeted natural class are sum-coded, such that the listed level can be compared to the average. 
For the preceding natural class, the held-out level is silence; for the targeted natural class, the held-out level is stops. 
 

Predictor Log-Odds CI p 

Intercept 1.66 1.50 – 1.82 <0.001 

70+ min -0.43 -0.52 – -0.34 <0.001 

25 min -0.50 -0.59 – -0.42 <0.001 

20 min -0.79 -0.87 – -0.71 <0.001 

15 min -1.51 -1.59 – -1.42 <0.001 

10 min -2.23 -2.31 – -2.14 <0.001 

5 min -2.58 -2.67 – -2.48 <0.001 

American English 100 hr -1.30 -1.38 – -1.22 <0.001 

American English 10 hr -0.90 -0.99 – -0.82 <0.001 

American English 70+ min -1.00 -1.08 – -0.92 <0.001 

Utterance duration (hs) -1.69 -2.42 – -0.95 <0.001 

Contamination amount -0.21 -0.31 – -0.11 <0.001 

Preceding vowel -0.25 -0.32 – -0.18 <0.001 

Preceding approximant -0.62 -0.70 – -0.54 <0.001 

Preceding nasal -0.37 -0.45 – -0.29 <0.001 

Preceding fricative -0.28 -0.39 – -0.17 <0.001 

Preceding stop 0.12 0.05 – 0.20 0.002 

Vowel 0.22 0.17 – 0.26 <0.001 

Approximant -0.62 -0.67 – -0.57 <0.001 

Nasal -0.07 -0.11 – -0.03 0.001 

Fricative -0.18 -0.24 – -0.11 <0.001 
 


