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Abstract:Thepresent study investigates patterns of covariation among acoustic properties of stop consonants
in a large multi-talker corpus of American English connected speech. Relations among talker means for
different stops on the same dimension (between-category covariation) were considerably stronger than
those for different dimensions of the same stop (within-category covariation). The existence of between-
category covariation supports a uniformity principle that restricts the mapping from phonological features
to phonetic targets in the sound system of each speaker. This principle was formalized with factor analy-
sis, in which observed covariation derives from a lower-dimensional space of talker variation. Knowledge
of between-category phonetic covariation could facilitate perceptual adaptation to novel talkers by pro-
viding a rational basis for generalizing idiosyncratic properties to several sounds on the basis of limited
exposure.
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1 Introduction
The phonetic realization of an individual sound category can vary substantially according to contextual,
lexical, dialectal, and talker-specific influences. This variation is highly structured: previous research has
documented strong dependencies among phonetic properties, as well as between phonetic properties and
many sociolinguistic factors (e.g. Labov 1966; Foulkes et al. 2001; Foulkes and Docherty 2006; Guy and
Hinskens 2016; Fruehwald 2017; Sonderegger et al. 2017). Thepresent study focuses on twoprominent types of
linear dependency in phonetic variation. The first type of dependency holds amongmultiple categories along
a single phonetic dimension (“between-category” covariation); the second holds among multiple phonetic
dimensions within individual categories (“within-category” covariation).¹

Instances of between-category phonetic dependencies have been observed among several speech
sounds. Talker-specific vowel systems differ extensively in the log F1 × F2 formant plane, but the sys-
tems are highly parallel, suggesting covariation along these dimensions (e.g. Joos 1948; Nearey 1978;
Nearey and Assmann 2007). Furthermore, largely constant spectral and temporal ratios are preserved
among vowel categories across speaking rates and styles (Smiljanić and Bradlow 2008; DiCanio et al.
2015). Relations among vowels can also be preserved during diachronic sound change, as when multi-
ple vowels undergo parallel shifts in their phonetic realization (e.g. Fruehwald 2013, Fruehwald 2017).
Among fricatives, the spectral centers of gravity of [s] and [∫] vary substantially across talkers, yet

1 There may be other forms of statistical dependency, beyond linear relations, among phonetic variables. It is also conceivable
that the values of one category on a given dimension could covary with those of another category on a different dimension. We
considered this alternative notion of “between-category” covariation but found limited evidence for it in the present data.
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within a talker, the mean COG of [s] is systematically higher than the corresponding mean COG of [∫]
(Newman et al. 2001). Strong covariation of mean voice onset time (VOT) has also been observed among
stop consonants across speakers of the same language (e.g. Zlatin 1974; Koenig 2000; Newman et al. 2001;
Solé 2007; Theodore et al. 2009; Chodroff and Wilson 2017). Theodore et al. (2009) observed a similar dif-
ference between the mean VOT values of [ph] and [kh] across talkers. Chodroff and Wilson (2017) extended
the study of between-category VOT covariation to all word-initial stop categories of American English (AE),
in both isolated and connected speech, while controlling for many other sources of VOT variation (e.g.
utterance position, following vowel, lexical properties). Correlations of talker VOT means were particularly
strong among the voiceless aspirated stops, and moderate among the voiced stops and homorganic voiced
pairs.

There is substantially less evidence for within-category phonetic dependencies across tokens and
across talker means. For example, while vowel height (as indexed by F1) and vowel duration are
known to covary across vowels in many languages (e.g. Lindblom 1967; Maddieson 1997), this rela-
tion does not appear to hold across individual tokens of the same vowel category (Toivonen et al.
2015).² Several studies have also examined the possibility that different cues to the voicing con-
trast, such as VOT and fundamental frequency (f0) at following vowel onset, covary within stop cat-
egories (e.g. Shultz et al. 2012; Dmitrieva et al. 2015; Kirby and Ladd 2015, Kirby and Ladd 2016;
Clayards 2018). Positive correlations of the relevant cues would indicate enhancement of the con-
trast, whereas negative correlations would suggest cue-trading or compensation relations. These rela-
tionships could hold across tokens or across talker means, and would indicate systematic relations
in the use of phonetic dimensions. The observed within-category dependencies tend to be weak and
vary considerably by language and sample. Kirby and Ladd (2015) found a significant negative cor-
relation between VOT and f0 across tokens of word-initial [p] in Italian, but this correlation did not
reach significance in French. A weak negative correlation between VOT and f0 was observed across
tokens of AE [ph] by Dmitrieva et al. (2015), but another study of the same language yielded no
significant linear relation between those dimensions for [ph] or [b] across tokens or talker means
(Clayards 2018).

Some factors involved in phonetic realization may induce both between- and within- category covaria-
tion. For example, Koenig (2000) found thatmedianVOTand following vowel durationwere highly correlated
across talkers for both [ph] (r = 0.72) and [th] (r = 0.77). This likely reflects talker specificity in global speak-
ing rate, leading to the expectation that correlations would also be found between the stop categories and for
other duration-sensitive cues. Covariation among cues that occurs both between and within categories may
be reducible to global factors such as speaking rate or airflow rate; this point will be considered further in
the discussion.

We examined covariation within and among the six AE word-initial stop consonants, focusing on three
well-known cues to the place and voice contrasts: spectral center of gravity (COG; e.g. Forrest et al. 1988),
positive VOT (e.g. Lisker and Abramson 1964), and f0 at vowel onset (e.g. Haggard et al. 1970; Ohde 1984).
Correlation analyses (Section 2) revealed considerably stronger between-category covariation than within-
category covariation. This accords with previous findings but is comprehensively demonstrated for the first
time here, with all measurements performed on the same multi-talker data set. The between-category corre-
lations can be accounted for with a principle of uniformity that constrains the mapping from phonological
feature values to talker-specific phonetic targets (Chodroff 2017; Chodroff and Wilson 2017). This principle
was quantitatively formalized and evaluated against the observed correlations within the dimensionality-
reduction framework of factor analysis (Section 3). As we discuss in Section 4, covariation in phonetic real-
ization across speakers implies predictability for listeners: listeners could use phonetic dependencies among
stop categories to generalize from limited experience with a novel talker.

2 Strong pairwise correlations of talker mean log f0, F1, F2, and F3 have been observed when aggregated over all vowels (Nearey
1989; Assmann et al. 2008; see also Rose 2010 for F2 and F3, and Whalen and Levitt 1995 for f0 and F1). It remains unclear,
however, which particular vowel categories exhibit these dependencies most strongly.
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2 Correlation analysis

2.1 Methods

The data was extracted from an audited subset of the Mixer 6 corpus (Brandschain et al. 2010, Brandschain
et al. 2013; Chodroff et al. 2016) containing approximately 45 minutes of read speech from 180 native AE
speakers (102 female). Transcripts were aligned to the correspondingWAV files with the Penn Forced Aligner
(Yuan and Liberman 2008), and all word-initial prevocalic stop consonants were further processed with
AutoVOT (Keshet et al. 2014). AutoVOT automatically identifies the stop release and following vowel onset
within a user-specified window of analysis. Further details about the talkers, read sentences, and boundary
alignments can be found in Chodroff and Wilson (2017).³

COG, positive VOT, and onset f0 in the following vowel were measured for each stop. COGwas calculated
from a smoothed spectrum over the initial portion of the release burst. Each spectrumwas computed by aver-
aging FFTs from seven consecutive 3 ms windows, with the first window centered on the burst transient and
a window shift of 1 ms (Hanson and Stevens 2003; Flemming 2007; Chodroff and Wilson 2014). Positive VOT
was defined as the duration from stop release to the onset of periodicity in the vowel; this was automati-
cally extracted from the AutoVOT boundaries or from manually-corrected boundaries when available. The
f0 value was the first one measured by Praat (Boersma and Weenink 2016) within 50 ms after the following
vowel onset.

For each stop category and cue separately, values 2.5 standard deviations above or below the talker-
specific mean were excluded. Consequently, the total number of valid tokens varied somewhat by stop cat-
egory and measurement (COG: 87,968 tokens; VOT: 96,357; onset f0: 76,144). Table 1 summarizes the data
available per talker for each stop and cue combination.

2.2 Results

For each stop and cue combination, talker means were calculated from all available tokens (e.g. a talker’s
mean COG for [ph] was calculated from all of his or her productions of that stopwith non-outlier COG values).
Pearson correlations were performed on the talker means between stop categories along a single dimen-
sion and, separately, between dimensions within each stop category. The bias-corrected and accelerated
percentile (BCa) method was used to form 95% bootstrapped confidence intervals for the correlations (1000
replicates; Efron 1987). As shown in Table 2, the between-category correlations among stopswere positive and

Table 1: For each stop category and measurement separately, the median number of tokens per talker (left column) and the
range of tokens per talker (right column).

COG VOT f0

Median Range Median Range Median Range

ph 75 45–98 77 44–100 59.5 6–96
b 86 57–127 98 64–138 80 9–127
th 45 16–75 46 17–77 37 4–67
d 115 53–170 140 64–192 113 12–173
kh 91 48–112 93 50–114 77 4–110
g 82 52–116 91 54–122 78 5–111

3 The dataset here was somewhat larger than that analyzed in Chodroff and Wilson (2017), which included only stops at the
beginning of stressed word-initial syllables. Because all talkers recorded the same set of sentences, any effects of stress (or other
contextual factors) onVOT and other acoustic properties should be approximately consistent.We aimed to include asmany tokens
as possible to maximize the power available to identify phonetic dependencies.
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Table 2: Pearson correlation coeflcients and 95% BCa bootstrap confidence intervals of stop-specific talker means for COG,
VOT, and f0.

COG VOT f0

ph–b 0.60 [0.49, 0.69] 0.17, n.s. [0.00, 0.32] 0.98 [0.97, 0.98]
th–d 0.66 [0.57, 0.73] 0.53 [0.43, 0.63] 0.97 [0.94, 0.98]
kh–g 0.69 [0.58, 0.76] 0.43 [0.32, 0.52] 0.97 [0.94, 0.98]
ph–th 0.40 [0.26, 0.51] 0.83 [0.77, 0.88] 0.98 [0.97, 0.99]
th–kh 0.47 [0.34, 0.58] 0.79 [0.73, 0.83] 0.98 [0.95, 0.99]
kh–ph 0.57 [0.45, 0.65] 0.83 [0.78, 0.87] 0.98 [0.98, 0.99]
b–d 0.55 [0.40, 0.66] 0.11, n.s. [−0.03, 0.24] 0.98 [0.98, 0.99]
d–g 0.67 [0.58, 0.75] 0.37 [0.24, 0.50] 0.98 [0.94, 0.99]
g–b 0.63 [0.51, 0.72] 0.48 [0.37, 0.58] 0.98 [0.95, 0.98]

All p-values were less than 0.001 unless otherwise indicated.

Table 3: Pearson correlation coeflcients and 95% BCa bootstrap confidence intervals of stop-specific talker means between
COG, VOT, and f0.

COG-VOT COG-f0 (female) COG-f0 (male) VOT-f0 (female) VOT-f0 (male)

ph 0.32* [0.17, 0.44] 0.11 [−0.08, 0.29] 0.12 [−0.09, 0.37] 0.09 [−0.09, 0.28] −0.03 [−0.22, 0.20]
b 0.37* [0.25, 0.50] 0.03 [−0.17, 0.22] −0.16 [−0.34, 0.05] −0.11 [−0.33, 0.12] −0.09 [−0.30, 0.13]
th 0.22 [0.07, 0.38] 0.10 [−0.08, 0.30] 0.11 [−0.13, 0.34] 0.03 [−0.19, 0.23] −0.02 [−0.25, 0.21]
d 0.74* [0.66, 0.80] 0.03 [−0.17, 0.24] −0.19 [−0.39, 0.02] 0.00 [−0.20, 0.21] 0.00 [−0.24, 0.23]
kh 0.23 [0.09, 0.35] 0.07 [−0.12, 0.25] 0.05 [−0.18, 0.28] 0.17 [−0.02, 0.36] −0.08 [−0.30, 0.15]
g 0.54* [0.43, 0.63] 0.12 [−0.09, 0.27] −0.14 [−0.34, 0.09] 0.08 [−0.13, 0.26] −0.06 [−0.26, 0.17]

For f0, the correlations are reported separately for female and male talkers. Correlations with p-values less than 0.001 are
identified with an asterisk.

generally high.⁴ For the COGdimension,moderate correlationswere observed among the voiceless stops, and
strong correlationswere observed among the voiced stops and between homorganic stop pairs (e.g. [kh]−[g]).
For VOT, the pattern of correlations replicated that found in Chodroff and Wilson (2017): relations were very
strong among the voiceless stops, and moderate to weak among the voiced stops and homorganic pairs.
Finally, talker mean f0 was almost perfectly correlated for all stops.⁵

Within-category correlations of talker means are shown in Table 3. Note that for f0, the correlations were
calculated separately for male and female talkers. COG and VOT means showed significant positive correla-
tions within each of the stop categories, but the strength of the relation depended on the category. These two
cues were weakly correlated within the voiceless stops and [b], but strongly correlated within [d] and moder-
ately within [g]. Within-category correlations between COG and f0, and VOT and f0, were numerically quite
weak and none reached significance. Additional within-category correlations calculated over tokens (instead
of over talker means) are reported in the Appendix.

2.3 Discussion

We found strong between-category covariation on each dimension for the segments and phonetic cues inves-
tigated here. In part, this surely reflects anatomical differences among talkers: differences that affect the
articulation and resulting acoustics of many sounds (e.g. the strong dependencies in onset f0 are partly due
to cross-talker variation in vocal fold length and tissue density; Titze 2011). But anatomy does not wholly
determine phonetic realization. Each talker could in principle have shown greater between-category differ-
ences in the phonetic targets that are indexedbyCOG (e.g. by specifying tongue tip position and contactwidth

4 The significance level was adjusted for multiple comparisons to the conservative value of α = 0.001.
5 Correlations are described usingmodifiers based on recommendations in Evans (1996): a “strong” correlation is one above 0.59,
a “moderate” correlation is between 0.40 and 0.59, and a “weak” correlation is below 0.40.
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for coronal [t] differently than for [d]), VOT (e.g. by planning the duration or timing of glottal spreading for
[ph] differently than for [kh]), and even f0 (e.g. by having a different pitch target for vowels following [d] than
for those after [g]). Indeed, research on language- and dialect-specific phonetics (e.g. Lisker and Abramson
1964), as well as the dual phonetic systems of bilinguals (e.g. Flege 1991; Grosjean and Miller 1994; MacLeod
and Stoel-Gammon 2005; Chang et al. 2011), has demonstrated that the phonetic targets associated with any
given category, such as [ph] or [b], can differ in ways that anatomy alone could never explain. Some addi-
tional principle must restrict the variation in phonetic targets for a given individual when speaking a given
language.

One version of the principle would require speakers to have the same (or highly similar) patterns of pho-
netic targets for sounds that bear a given phonological feature value. For example, the principle could require
each talker’s laryngeal target for [ph] to be systematically related to the same talker’s laryngeal target for [kh],
on the grounds that both sounds are specified [–voice] (or [+spread glottis]). A more stringent version of the
principle requires the talker-specific phonetic target corresponding to a given phonological feature value to
be identical or uniform across all sounds bearing that specification.⁶ In this version, a talker cannot indepen-
dently specify the properties of the laryngeal spreading gesture and associated timing relations for [ph], [th],
and [kh]: themapping fromphonological feature to phonetic targetmust be the same, in these respects, for all
three voiceless aspirated stop categories. (Observed variation in cue values for identically specified sounds
must then arise “automatically” from independent differences in other targets, as discussed in Section 4
below.)

Within-category covariation was generally quite weak and we do not propose a separate principle
of phonetic implementation to explain the dependencies that were found. The positive COG-VOT corre-
lation observed for several stops may be attributable to aerodynamics: a higher airflow rate may give
rise to an upwards shift in the energy distribution across the spectrum (Zue 1976; Koenig et al. 2013;
Chodroff and Wilson 2014) and to longer aspiration durations. Notably, we found that this dependency held
not only within stop categories but also when comparing the same two cues across them (e.g. for mean COG
of [d] and mean VOT of [ph], r = 0.46, p < 0.001). Perhaps each talker has a relatively higher or lower air-
flow rate across all stops (plausibly due to uniform realization of the shared feature [–continuant]), and this
affects all COG andVOT values accordingly. A remaining question iswhy the correlations are particularly high
within [d] and [g]. We speculate that the presence of voicing during stop closure for some talkers may lower
COG and VOT. The weaker within-category correlation for [b] is likely due to the fact that the (positive) VOT
of this stop does not vary as much across talkers.

3 Factor analysis
The strong between-category correlations documented above indicate that population-level variation in the
phonetic realization of AE stops can be accurately modeled with a relatively small number of latent values
for each talker. This idea could be formalized with many dimensionality reduction methods, including tra-
ditional principle component analysis (PCA; e.g. Pols et al. 1973; van Nierop et al. 1973) and more recently
proposed eigenvoice decompositions (Kuhn et al. 1998). Themodel developed in this section is an instance of
factor analysis (FA; e.g. Harshman et al. 1977; Clopper and Paolillo 2006; Leinonen 2008), a formally simple
method that can express easily interpretable hypotheses about the content of the latent values.

In FA generally, each observed vector (xi) is modeled as drawn from a multivariate normal distribution
with mean Wzi + µ and covariance matrix Ψ. The factor loading matrix W represents a linear map from a
latent vector (zi) into the observation space,where thedimensionality of zi is smaller than that of xi. The offset
vector µ represents aspects of themean that are, according to themodel, the same across all individuals. Two

6 Either version of the principle must apply separately to each language / dialect / register that is controlled by a speaker. More
generally, the principle should allow wide latitude in the contextual factors that can affect phonetic realization (e.g. prosody
and speaking rate alongside language and register), requiring only that such factors have uniform effects on all sounds that are
identically specified with respect to the relevant phonological feature.
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additional restrictions are enforced: (a) Ψ is required to be diagonal, so that the components of an observed
vector xi are independent conditional on the latent vector zi, and (b) the distribution over latent vectors is a
multivariate normal with zero mean and unit covariance, so that the components of zi are standardized and
independent from one another. In summary, for each individual i = 1, . . . , n

p(xi) = N(Wzi + µ, Ψ), where Ψ is diagonal
p(zi) = N(0, I)

It follows that two components of the observed vector are predicted to covary only if they “load on” (have
non-zero influence from) one or more common latent variables. In this way, factor analysis represents cor-
related variables in a higher-dimensional space with uncorrelated variables in a lower-dimensional space
through a simple (i.e. linear) transformation.

FA provides a method for formalizing the hypothesis that, within the set of AE stops, the talker-specific
contribution to phonetic targets is uniform for each phonological feature specification (as suggested in
Section 2). To evaluate this hypothesis, we take each observed xi to be the vector of stop cue means for a
particular talker (i.e. xi = [piCOG, biCOG, tiCOG, . . . , piVOT, . . . , piOnset-f0, . . . , giOnset-f0]T , where xci is the sample
mean for cue c of stop x computed from the productions of the ith talker). The latent vector zi represents the
talker-specific contributions to the phonetic targets for all six stops, as reflected in the acoustic cues. Under
the idealization that each cue reflects the talker-specific target contribution for one phonological feature, the
uniformity principle implies a factor loadingmatrixW with the following highly sparse structure (where zero
entries are left blank and the matrix is transposed for display purposes):

WT =

lab

cor

dor

vcl

vcd

pitch

pCOG bCOG tCOG dCOG kCOG gCOG pVOT bVOT tVOT dVOT kVOT gVOT pf0 bf0 tf0 df0 kf0 gf0⎛⎜⎜⎜⎜⎜⎜⎜⎝

wlab wlab

wcor wcor

wdor wdor

wvcl wvcl wvcl

wvcd wvcd wvcd

wp wp wp wp wp wp

⎞⎟⎟⎟⎟⎟⎟⎟⎠
For example, according to W the latent factor identified with the feature vcl (i.e. [–voice] or [+spread

glottis]) has the same influence (wvcl) on the VOT of the three voiceless stops, and zero effect on all other
stop-cue combinations. Similar logic applies to the other feature-cue combinations (e.g. given the idealiza-
tion that COG reflects only place features); note that “pitch” is an ad-hoc feature that predicts covariation of
talker-specific f0 means across all vowels. In our implementation of the model, we in fact multiplied each
row ofW by the empirical standard deviation of its label (e.g. the first row was multiplied by the standard
deviation of the talker means for COG of [ph]). This induces a marginal distribution over xi in which each w2

k
is interpretable as a positive and pooled correlation coefficient.

The free parameters of this version of the FA model (i.e. the coefficients ofW, the offset µ, and the diag-
onal elements of Ψ) were fit to the talker mean vectors measured earlier. As expected, the factor-loading
coefficients indicated strong correlations among the stop-cue combinations that reflect a common feature
value (w2

lab = 0.60, w2
cor = 0.67, w2

dor = 0.69, w2
vcl = 0.72, w2

vcd = 0.20, w2
pitch = 0.91; these values should

be compared to the correlations in Table 2). The values in the offset µ account for talker-general differences
in the values of stop-cue combinations that are otherwise unexpected givenW; for example, the offset for the
VOT of [b] (µ = 8.42) is lower than that for the VOT of [g] (µ = 16.86). One interpretation of such offset differ-
ences is that they reflect “automatic” articulatory and acoustic effects – influences on themeasurements that
would be present even if the underlying phonetic targets studied here were exactly uniform within a talker.
For example, effects of place on stop closure duration could contribute to differences in VOT values even if
laryngeal targets and their timing with respect to supralaryngeal gestures are uniform (e.g. Weismer 1980;
Maddieson 1997).

We compared the FA model above (the target uniformitymodel) with several alternatives that differed in
the factor loading matrix: a null covariation model, in which W was the diagonal matrix; a sample of 500
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Table 4:Marginal negative log-likelihood for observed talker mean vectors under different versions of the factor analysis
model.

Model Negative log-likelihood

Target uniformity 14,836.99
Null (diagonal) 16,694.72
Row permutation 16,438.98 (range: 15,696.90–16,583.83)
Exploratory 14,419.77

row permutation models derived by randomly exchanging the rows of the target uniformity model; and an
exploratory model, in which the factor loading matrix had six columns with all cell values fit to the data.
Table 4 reports themarginal negative log-likelihood values of the talkermean vectors for eachmodel. The tar-
get uniformity model provided a significant improvement over the null model and all of the row-permutation
variants, while the exploratory model was superior to target uniformity (similar results were obtained with
other model comparison measures and with cross-validation). These results suggest that target uniformity is
an important (but unlikely the only) principle of phonetic implementation that constrains the covariation of
stop consonants within talkers.⁷

4 Covariation and predictability in perceptual adaptation
Patterns of phonetic covariation such as the one observed above have important implications not only for
the mapping between phonology and phonetics, but also for their potential role in perceptual adaptation.
On the basis of strong between-category covariation, listeners could reasonably predict a talker-specific
target for one sound category after hearing productions of only one or more covarying categories. The
findings of many studies of perceptual generalization are consistent with this idea. For instance, listeners
generalize talker-specific spectral characteristics from exposure vowels to previously unheard vowels (e.g.
Ladefoged and Broadbent 1957; Maye et al. 2008; Chládková et al. 2017) and have been shown to extra-
polate a talker’s characteristic VOT from [ph] to [kh] based on direct evidence about [ph] only (e.g. Theodore
and Miller 2010; Nielsen 2011). A listener may have low prior expectations for within-category covariation,
but could infer talker-specific relations among cues through distributional learning (e.g. Clayards et al.
2008).

The FA model presented above encodes covariation with a lower-dimensional set of latent variables.
If listeners attempted to infer the latent factor values of a novel talker, they would generalize across seg-
ments with shared phonological feature specifications in a way that is consistent with the population-level
correlations. In this sense, the FA model could be interpreted as a cognitive model of adaptation. Between-
category covariation has been incorporated to varying degrees in previous models of adaptation. Models
that employ variants of mean subtraction or z-scoring within each phonetic dimension implicitly enforce
covariation, provided the calculation incorporates values from several speech sounds (e.g. Sliding Template
Model of Vowel Normalization: Nearey and Assmann 2007; c-CuRE: McMurray and Jongman 2011; VOT gen-
eralization: Nielsen and Wilson 2008). These models, however, have posited that each talker has a single
“offset” value per cue and thus assume perfect covariation among all speech sounds represented on a given

7 Two columns of the loading matrix in the exploratory model were quite similar to columns in the theoretically-determined
matrix W. The first had large values only for the VOT means of the voiceless stops, closely emulating uniform realization of
[–voice] or [+spread glottis]. The second had values near unity for all of the f0 means, and much smaller values elsewhere, in
line with uniformity with respect to the “pitch” feature. A third column seemed to combine the place effects ofW, with particu-
larly large values for the COG mean of [kh] and [g], intermediate values for the other COG means, and smaller values for all other
means. Two of the remaining columns appear to express correlations among COG and VOT for [d] and [g] separately; these within-
category relations were found in our statistical analysis (see Section 2) but do not follow from the uniformity principle. The final
column was generally difficult to interpret but assigned a particularly large value to the VOT mean of [b], the stop most likely to
have closure voicing.
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acoustic-phonetic dimension. To the extent that the empirical covariation is weak for some of the relevant
sounds (e.g. as observed for VOT between stops contrasting in voice), this strong assumption could lead
to suboptimal performance. Alternative models of talker adaptation, such as exemplar models or the ideal
adaptor model, do not currently encode covariation of phonetic properties, and may therefore fail to model
aspects of perceptual generalization across speech sounds (e.g. Johnson 1997; Kleinschmidt and Jaeger 2015).
In comparison, FA can model selective, and ideally theoretically-grounded, patterns of between-category
covariation, as opposed to assuming perfect covariation or omitting covariation altogether. Future research
should be directed towards understanding the relation betweenmeasured phonetic covariation and patterns
of perceptual generalization by human listeners.

5 Conclusion
The analyses of talker means for COG, VOT, and onset f0 within and among stop categories revealed greater
between-category covariation in comparison to within-category covariation. As examined in Section 3, the
observed covariation among phonetic categories may arise from a constraint of uniformity on the mapping
from phonological features to phonetic targets underlying acoustic-phonetic properties. Further research is
required to evaluate the predictions of uniformity as it applies to other segments and languages. In addition,
perceptual knowledge of covariation could facilitate prediction in perceptual processing, andmore generally,
the measured covariation serves as a testable hypothesis of perceptual knowledge in generalized adaptation
in speech perception.

Appendix
The analyses in Section 2 involved correlations of talker means; however, many previous studies have also
examined correlations across individual tokens (e.g. Dmitrieva et al. 2015; Kirby and Ladd 2015, Kirby and
Ladd 2016; Clayards 2018). For comparisonwith these studies, token-by-token correlations between phonetic
cues were calculated for each stop category within and across talkers. Only stop consonants with non-outlier
values for both cues were retained for these correlations. There were 71,852 stops for the COG-VOT analysis,
57,737 stops for the COG-f0 analysis, and 74,916 stops for the VOT-f0 analysis. The first correlation analysis,
reported inTableA1,was conductedacross all tokens (see alsoDmitrieva et al. 2015; Clayards 2018). These cor-
relations largely resembled the correlations of talker means in magnitude (especially between COG and VOT
for [b], [d], and [g]);whilemanyof these correlations reached significance, theywere nevertheless quiteweak.
In the second analysis, correlations were limited to talkers with more than 20 tokens per stop category. The
median number of talkers excluded from each analysis was four and the maximum was 55 talkers (between
COGand f0 for [th]). TableA2presents themedian token-by-token correlation for eachof the cuepairs and stop
consonants, as well as the range across talkers. Consistent with findings in Kirby and Ladd (2016) for French
and Italian intervocalic stops, themagnitude anddirection of the by-speaker correlations varied substantially

Table A1: Token-by-token correlations for each cue pair and stop category aggregated over all talkers.

COG-VOT COG-f0 (female) COG-f0 (male) VOT-f0 (female) VOT-f0 (male)

ph 0.18* −0.01 0.09* −0.05* −0.02
b 0.34* 0.00 −0.05* −0.03 −0.01
th 0.09* 0.07* 0.12* −0.11* −0.06*
d 0.57* −0.11* −0.06* −0.06* −0.01
kh 0.17* 0.10* 0.09* −0.15* −0.13*
g 0.52* 0.03 −0.01 −0.03 0.01

An asterisk reflects p < 0.001.
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Table A2: For each stop category and cue pair separately, the median talker-specific token-by-token correlation (left column)
and range of talker-specific token-by-token correlations (right column).

COG-VOT COG-f0 VOT-f0

Median Range Median Range Median Range

ph 0.17 −0.41 to 0.62 0.09 −0.41 to 0.44 −0.04 −0.47 to 0.54
b 0.33 −0.14 to 0.77 −0.01 −0.53 to 0.64 0.00 −0.37 to 0.41
th 0.06 −0.46 to 0.59 0.10 −0.34 to 0.51 −0.16 −0.59 to 0.41
d 0.54 −0.18 to 0.75 −0.06 −0.50 to 0.45 −0.03 −0.35 to 0.42
kh 0.16 −0.31 to 0.57 0.10 −0.34 to 0.52 −0.20 −0.61 to 0.39
g 0.54 −0.04 to 0.79 0.01 −0.51 to 0.39 0.00 −0.38 to 0.33

across talkers. Together, these findings indicate that, while there may exist weak relationships across talker
means, the token-by-token relationships within talker-specific productions are highly variable.
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