Northwestern

${ }^{2}$ University of Oregon, Department of Linguistics

Introduction

L2 speech has typically been considered more variable in its phonetic realization than L1 speech (e.g., Fege, Takagi, \& Mann 1995;
cf. Vaughn, Baese-Berk, \& Idemaru 2018).

In learning a new phonetic category, a speaker may have: - Uncertainty in the targets - Uncertainty in the implementation

Previous research has found constraints on permissible variation between speech sounds within a natural class in L1 speech.

Talker mean VOTs of [$p^{h} t^{h} k^{h}$] strongly covary with one another in L1 American English, indicating systematic relationships of VOT within the natural class (Chodroff \& Wilson 2017)

VOT covariation has also been observed across over 100 languages, but in L1 speech only (Chodroff, Golden, \& Wison under review).

Given the increased uncertainty in L2 representations, it seems plausible that these structured relations in VOT may break down in L2 speech.

Do L2 English speakers maintain structured relations in VOT among the voiceless stop consonants?

Does VOT covariation arise from the use of L1 phonetic targets or from a parallel shift in phonetic targets?

ALLSSTAR Corpus

Archive of L1 and L2 Scripted and Spontaneous Transcripts and Recordings

Connected speech tasks in L1 and L2
Declaration of Human Rights: 20 sentences
HINT 1: 60 sentences
HINT 2: 60 sentences
Le Petit Prince: 30 sentences
The North Wind and the Sun passage
140 speakers from Northwestern University (86 M, 54 F) 114 bilingual speakers 26 monolingual English speakers

L2 English VOT Covariation

Do L2 English speakers maintain structured relations in VOT among the voiceless stop consonants?

Methods

Employed English read speech from L1 and L2 speakers
Forced phonetic alignment using FAVE
Represented L1 I Number of speakers I Presence of aspiration in L1

Cantonese	14	\checkmark	Hebrew	4	~	Portuguese (Brazilian)	5	
English (American)	26	\checkmark	Hindi	5		Runyankore	1	
Farsi	3		Indonesian	,		Russian	5	
French	1		Japanese	3	\sim	Spanish	11	
German	2	\checkmark	Korean	11	\checkmark	Spanish (US Heritage)	12	
Gishu	1		Mandarin (China)	14	\checkmark	Turkish	13	\checkmark
Greek	1		Mandarin (Singapore)	1	\checkmark	Vietramese	4	$\left[{ }^{\text {tr }}\right]$
Gujarat	1	\checkmark	Mandarin (Taiwan)	1	\checkmark	Each L1 has voiceless /ptk/ in		

Results
Total \# stops: $\sim 3800 / p /, 3500 / t /, 6200 / \mathrm{k} /=\sim 13,500 \mid$ Per speaker: $\sim 27 / \mathrm{p} /, 25 / \mathrm{t} /$, $45 / \mathrm{k} /=\sim 97$
Strong covariation of VOT (ms) among voiceless stops in L2 English

Speaker mean and SD fairly correlated (rs between 0.50 and 0.80)

L1 to L2 VOT Covariation

Does VOT covariation arise from the use of L1 phonetic targets or from a parallel shift in phonetic targets?

Methods

Employed non-English L1 read speech from languages that could be force aligned Forced phonetic alignment using Montreal Forced Aligner with pre-trained acoustic and grapheme-to-phoneme models
French | German | Korean | Mandarin | Portuguese (Brazilian) | Russian
Spanish | Spanish (US Heritage) | Turkish
Automatic VOT alignment using AutoVOT

Results

Strong covariation of VOT (ms) among voiceless stops across languages (non-English)

Strong covariation of VOT shifts (ms) from L1 to L2 VOT among voiceless stops

The phonetic targets underlying VOT for $/ \mathrm{p} /$, It , and $/ \mathrm{k} /$ may differ from the L 1 to L2 grammar, but the relationship among those segments is approximately the same

Discussion

Summary and implications

Strong linear relationships between VOT means of /p/, /t/, and/k/ in L2 English
Some representation of natural class in L2 grammar: phonetic targets underlying VOT for /p t k/ shift in parallel (rarely the case that an individual acquires a more English-like VOT for /k/, but not for /p/ and /t/
Need to further investigate cases when shifts are not entirely parallel (e.g., Spanish /p/)

Acknowledgments We would tike to thank Huanyang Xu and Kavla Walker for their help in data processing. We also thank Ann Bradlow, Chun-Liang Chen, Yasmin Elmasri, Jordan Hosier, and Linda N Hosier, and Linda Nwumeh for their support in data processing and management. Additional thanks go to the ASA Strategic Plan Goal 2 Task Force for supporting the

What gives rise to covariation?

Structure in the output indicates structure in the input produce the following patterns:

A speaker can have two

Principle of uniformity

- Mapping from phonological feature value to corresponding set of phonetic targets must be uniform for all segments with that feature value
- Phonetic targets underlying VOT may be articulatory in nature
- Covariation arises from underlying (near-)identity in targets for /p t k/
- Applies to L1 and L2 grammars

