Covariation of voice onset time: a universal aspect of phonetic realization

Eleanor Chodroff¹, Alessandra Golden², and Colin Wilson²

¹Northwestern University, Department of Linguistics ²Johns Hopkins University, Department of Cognitive Science

92nd Annual Meeting of the LSA Salt Lake City, UT January 4, 2018

Introduction

Extensive cross-linguistic variation in the realization of speech sounds

• Vowel formants

e.g., Disner 1978, Lindau 1978, Manuel 1990

Fricative COG

e.g., Gordon 2002

• Vowel f0

e.g., Whalen and Levitt, 1995

Stop VOT

e.g., Maddieson 1997, Cho & Ladefoged 1999

Cross-linguistic phonetic variation

Keating 1985, 1990, Cohn 1993, Cho & Ladefoged 1999

Cross-linguistic phonetic variation

What is the relational structure of cross-linguistic phonetic variation?

Keating 1985, 1990, Cho & Ladefoged 1999

Relational structure of phonetic variation

1) Do the VOTs of [p^h], [t^h], and [k^h] vary independently of one another?

Relational structure of phonetic variation

2) Is there consistency in the ordinal ranking of [p^h], [t^h], and [k^h]?

$VOT[p^h] < (VOT[t^h]) < VOT[k^h]$

e.g., Maddieson 1997, Cho & Ladefoged, 1999 Variable ranking of [t^h]: Suomi 1980, Docherty 1992, Whalen et al. 2007, Yao 2009, Chodroff & Wilson 2017

Relational structure of phonetic variation

3) Is there a consistent linear relationship among [p^h], [t^h], and [k^h]?

place of articulation

- Linear relationship is a simple type of patterned covariation
- Could imply ordinal relation (e.g., $VOT[k^h] = VOT[p^h] + x, x \approx 17 \text{ ms}$)

Chodroff & Wilson 2017

Outline

- 1. Introduction
- 2. Cross-linguistic VOT survey
- 3. Uniformity constraint
- 4. Discussion
- 5. Future Directions

Cross-linguistic VOT survey

Large collection of previously reported stop VOT values

Examine relational structure of VOT among stops that have the same laryngeal feature specification*

* not just [+spread glottis], but also [-spread glottis], [-voice], [+voice], etc.

Examined ~350 theses, articles, grammars, and manuscripts Collected stop VOT values from 164 sources

113 languages (149 dialects)36 language families

Removed:

- Breathy / voiced aspirated
- Glottalized / ejective
- Tense (Korean)
- Implosives
- Palatal stops
- Uvular stops

Removed:

- Child data
- Explicitly labeled bilingual data
- L2 data

1671 VOT values remained for analysis

Averaged VOT data points with shared place and voice within each study, resulting in 1079 data points

Language Family	Languages	Data points
Indo-European	Afrikaans, Armenian (Eastern), Assamese, Bengali, Catalan, Croatian, Danish, Dutch, English, French, Gaelic (Scots), German, Greek (Modern), Hindi, Icelandic, Italian, Kurmanji, Marathi, Nepali, Norwegian, Pahari, Panjabi, Pashto, Persian, Polish, Portuguese (Brazilian), Portuguese (European), Russian, Serbian, Sindhi, Spanish, Swedish, Welsh	557
Sino-Tibetan	Bunun, Burmese, Cantonese, Fukienese, Galo, Hakha Lai, Hakka, Hokkien, Karen (Sgaw), Khonoma Angami, Kurtop, Mandarin, Stau, Taiwanese, Wu (Shanghainese)	106
Afro-Asiatic	Amharic, Arabic, Dahalo, Hebrew (Modern), Musey	41
Austronesian	Belep, Madurese, Malay, Tsou, Yapese	31
Niger-Congo	Bowiri, Igbo, Shekgalagari, Swati, Tswana, Zulu	39
Uralic	Finnish, Hungarian	21
Na-Dene	Apache (Western), Hupa, Navajo, Tlingit	19

Language Family	Languages	Data points
Korean	Korean	18
Tai-Kadai	Tai Khamti, Thai	18
Tupian	Arara, Munduruku	17
Dravidian	Tamil, Telegu	15
Quechuan	Quechua (Bolivian), Quechua (Cuzco), Quichua	15
Japanese	Japanese	14
Mayan	Itzaj Maya, Mam (Southern), Mopan Maya, Tzutujil, Yukateko Maya	14
Altaic	Azerbaijani, Turkish	12
Kartvelian	Georgian	12
Austro-Asiatic	Pnar, Remo	11
Oto-Manguean	Mazatec (Jalapa), Zapotec (Yalalog)	10
Burushaski	Burushaski	9
Algic	Ojibwe	6
Kordofanian	Moro	6
Muskogean	Chickasaw	6

Language Family	Languages	Data points
Northwest Caucasian	Kabardian	6
Pama-Nyungan	Warlpiri, Yan-Nhangu	6
Salishan	Montana Salish	6
Ticuna	Ticuna	6
Uto-Aztecan	Paiute (Northern), Ute	6
Wakashan	Kwakw'ala	6
Tucanoan	Waimaha	5
Eskimo-Aleut	Aleut (Eastern), Aleut (Western)	4
Chapacura-Wanham	Wari'	3
Creole	Hawaiian Creole	3
ljoid	Defaka	3
Nakh-Dagestanian	Udi	3
Tangkic	Kayardild	3
Arauan	Banawa	2

Relied on primary source descriptions of the laryngeal specifications

Aggregate analyses

VOT categories Negative: < 0 ms Short-lag: > 0 ms and < 35 ms Long-lag: > 35 ms

Kuhl & Miller 1975

Results

Variation in language-specific VOT means (ms)

Median values	category	labial	coronal	dorsal
	Negative	-83 ms	-80 ms	-64 ms
	Short-lag	14 ms	18 ms	30 ms
	Long-lag	62 ms	65 ms	76 ms

Ordinal rankings

Place differences Canonical order: VOT[labial] < VOT[coronal] < VOT[dorsal]

	Canonical order	Non-canonical order		
Comparison	Place1 < Place2	Place2 < Place1	Ν	
labial - coronal	76%	24%	339	
coronal - dorsal	89%	11%	337	
labial - dorsal	96%	4%	317	

Maddieson 1997, Cho & Ladefoged 1999, Whalen et al. 2007, Chodroff & Wilson 2017

Aggregate analysis of language-specific VOT means (ms)

http://dev.eleanorchodroff.com/apps/crosslgVOT

Long-lag VOT

Short-lag VOT

Negative VOT

Outline

- 1. Introduction
- 2. Cross-linguistic VOT survey
- 3. Uniformity constraint
- 4. Discussion
- 5. Future Directions

Mapping from distinctive features to phonetic targets is *not independent* across segments within a language

Within the phonetic grammar of a language/talker, the phonetic targets corresponding to a phonological feature value [aF] are (ideally) identical for all segments that are specified [aF]

Applied to long-lag stops:

Within a language/speaker, duration and timing of glottal opening gesture relative to stop closure interval should be uniform for all stops specified [+s.g.]

Maddieson 1997, Cho & Ladefoged 1999

Previous research on VOT: Are place differences in VOT planned or automatic / mechanistic?

Several aerodynamic and biomechanical explanations for VOT variation by place of articulation

- Volume of cavity posterior and anterior to constriction
- Movement of articulators
- Extent of articulatory contact area
- Change of glottal opening area
- Fixed duration for glottal gesture timed relative to a single point in the closure

Maddieson 1997, Cho & Ladefoged 1999

Claim that differences are automatic presupposes that, for all stops within a laryngeal series, phonetic targets for the laryngeal feature are *uniform*

Westbury & Keating 1984, Keating 1985

Can uniformity be reduced to other known effects and constraints on phonetic realization?

Talker physiology / aerodynamics

 Cross-linguistic evidence: even within a laryngeal subcategory (e.g., longlag), it is physically possible to produce [p^h] with a consistently longer VOT than [k^h]

Perceptual dispersion

 VOTs of stop categories within a laryngeal series are *more similar* to one another than would be predicted by dispersion alone

Liljencrants & Lindblom 1972, Schwartz et al. 1997, Flemming 2004

Applies strongly to languages and speakers, thereby ensuring cross-talker relational invariance / restricting individual differences

Each point = pair of VOT means (ms) for a speaker of American English

Chodroff & Wilson 2017

Strong evidence for a uniformity constraint operating on the phonetic implementation of stop consonant laryngeal features

Evidence from VOT covariation cross-linguistically Evidence from VOT covariation across talkers of American English

Linear relation arises from underlying identity (or near-identity) in the phonetic implementation of laryngeal feature value within each series

→ Uniform duration and timing of glottal gestures (abduction and adduction) relative to supralaryngeal closure

Future directions

Role of contrast

→ Does uniformity apply as strongly to 'unpaired' stops as to those with in minimal laryngeal contrasts (e.g., languages with /p t k/ but /b d/)

Examine cross-linguistic patterns for other features and segments

→ Is uniformity specific to stop VOT? Evidence from fricatives in American English and Czech

Chodroff 2017

→ Do some languages deviate from uniformity (e.g., as the result of recent sound change)?

Relate to phonological theories of feature hierarchies

 \rightarrow Identify natural classes (e.g., stops) strongly bound by uniformity

Thanks to...

Andries Coetzee (UMich), James Kirby (Edinburgh), Paul Morris (Iowa), Sharon Rose (UCSD) for generously providing data

> Doug Whalen (CUNY, Haskins) Paul Smolensky (JHU, Microsoft)

Northwestern Phonatics Berkeley Phonetics and Phonology Forum ("Phorum")

Northwestern University Postdoctoral Professional Development Travel Grant

Thank you!