Covariation of voice onset time: a universal aspect of phonetic realization

Eleanor Chodroff ${ }^{1}$, Alessandra Golden², and Colin Wilson²

${ }^{1}$ Northwestern University, Department of Linguistics
${ }^{2}$ Johns Hopkins University, Department of Cognitive Science

Introduction

Extensive cross-linguistic variation in the realization of speech sounds

- Vowel formants

$$
\text { e.g., Disner 1978, Lindau 1978, Manuel } 1990
$$

- Fricative COG
e.g., Gordon 2002
- Vowel f0

$$
\text { e.g., Whalen and Levitt, } 1995
$$

- Stop VOT

Cross-linguistic phonetic variation

Cross-linguistic phonetic variation

What is the relational structure of cross-linguistic phonetic variation?
Keating 1985, 1990, Cho \& Ladefoged 1999

Relational structure of phonetic variation

1) Do the VOTs of [$\left.p^{h}\right]$, $\left[t^{h}\right]$, and $\left[k^{h}\right]$ vary independently of one another?

Relational structure of phonetic variation

2) Is there consistency in the ordinal ranking of $\left[p^{h}\right],\left[t^{h}\right]$, and $\left[k^{h}\right]$?

$$
\operatorname{VOT}\left[p^{h}\right]<\left(\operatorname{VOT}\left[\mathrm{t}^{h}\right]\right)<\operatorname{VOT}\left[\mathrm{k}^{\mathrm{h}}\right]
$$

e.g., Maddieson 1997, Cho \& Ladefoged, 1999

Variable ranking of [th]: Suomi 1980, Docherty 1992, Whalen et al. 2007, Yao 2009, Chodroff \& Wilson 2017

Relational structure of phonetic variation

3) Is there a consistent linear relationship among $\left[p^{h}\right],\left[t^{h}\right]$, and $\left[k^{h}\right]$?

- Linear relationship is a simple type of patterned covariation
- Could imply ordinal relation (e.g., VOT $\left[k^{h}\right]=\operatorname{VOT}\left[p^{h}\right]+x, x \approx 17 \mathrm{~ms}$)

Outline

1. Introduction

2. Cross-linguistic VOT survey
3. Uniformity constraint
4. Discussion
5. Future Directions

Cross-linguistic VOT survey

Large collection of previously reported stop VOT values
Examine relational structure of VOT among stops that have the same laryngeal feature specification*

* not just [+spread glottis], but also [-spread glottis], [-voice], [+voice], etc.

Methods

Examined ~350 theses, articles, grammars, and manuscripts Collected stop VOT values from 164 sources

113 languages (149 dialects)
36 language families

Removed:

- Breathy / voiced aspirated
- Glottalized / ejective
- Tense (Korean)
- Implosives
- Palatal stops
- Uvular stops

Removed:

- Child data
- Explicitly labeled bilingual data
- L2 data

Methods

Averaged VOT data points with shared place and voice within each study, resulting in 1079 data points

Language Family	Languages	Data points
Indo-European	Afrikaans, Armenian (Eastern), Assamese, Bengali, Catalan, Croatian, Danish, Dutch, English, French, Gaelic (Scots), German, Greek (Modern), Hindi, Icelandic, Italian, Kurmanji, Marathi, Nepali, Norwegian, Pahari, Panjabi, Pashto, Persian, Polish, Portuguese (Brazilian), Portuguese (European), Russian, Serbian, Sindhi, Spanish, Swedish, Welsh	557
Sino-Tibetan	Bunun, Burmese, Cantonese, Fukienese, Galo, Hakha Lai, Hakka, Hokkien, Karen (Sgaw), Khonoma Angami, Kurtop, Mandarin, Stau, Taiwanese, Wu (Shanghainese)	106
Afro-Asiatic	Amharic, Arabic, Dahalo, Hebrew (Modern), Musey	41
Austronesian	Belep, Madurese, Malay, Tsou, Yapese	31
Niger-Congo	Bowiri, Igbo, Shekgalagari, Swati, Tswana, Zulu	39
Uralic	Finnish, Hungarian	21
Na -Dene	Apache (Western), Hupa, Navajo, Tlingit	19

Methods

Language Family	Languages	Data points
Korean	Korean	18
Tai-Kadai	Tai Khamti, Thai	18
Tupian	Arara, Munduruku	17
Dravidian	Tamil, Telegu	15
Quechuan	Quechua (Bolivian), Quechua (Cuzco), Quichua	15
Japanese	Japanese	14
Mayan	Itzaj Maya, Mam (Southern), Mopan Maya, Tzutujil,	14
Altaic	Yukateko Maya	14
Kartvelian	Azerbaijani, Turkish	12
Austro-Asiatic	Georgian	12
Oto-Manguean	Pnar, Remo	11
Burushaski	Mazatec (Jalapa), Zapotec (Yalalog)	10
Algic	Burushaski	9
Kordofanian	Ojibwe	6
Muskogean	Moro	6

Methods

Language Family	Languages	Data points
Northwest Caucasian	Kabardian	6
Pama-Nyungan	Warlpiri, Yan-Nhangu	6
Salishan	Montana Salish	6
Ticuna	Ticuna	6
Uto-Aztecan	Paiute (Northern), Ute	6
Wakashan	Kwakw'ala	6
Tucanoan	Waimaha	5
Eskimo-Aleut	Aleut (Eastern), Aleut (Western)	4
Chapacura-Wanham	Wari'	3
Creole	Hawaiian Creole	3
Ijoid	Defaka	3
Nakh-Dagestanian	Udi	3
Tangkic	Kayardild	3
Arauan	Banawa	2

Methods

Relied on primary source descriptions of the laryngeal specifications

voiced

voiceless unaspirated voiceless aspirated
voiceless
lenis fortisshort-lag
voiceless emphatic
unaspirated
voiceless non-emphatic
plain $\underset{\widetilde{T}}{\stackrel{0}{\bar{T}}}$ lax voiced non-emphatic voiceless lax unaspirated voiced unaspirated
aspirated

Aggregate analyses

VOT categories
Negative: < 0 ms
Short-lag: > 0 ms and $<35 \mathrm{~ms}$
Long-lag: > 35 ms

Kuhl \& Miller 1975

Results

Variation in language-specific VOT means (ms)

Ordinal rankings

Place differences
Canonical order: VOT[labial] < VOT[coronal] < VOT[dorsal]

Canonical order

Comparison	Place1 < Place2	Place2 $<$ Place1	N
labial - coronal	76%	24%	339
coronal - dorsal	89%	11%	337
labial - dorsal	96%	4%	317

Maddieson 1997, Cho \& Ladefoged 1999, Whalen et al. 2007, Chodroff \& Wilson 2017

Linear relation

Aggregate analysis of language-specific VOT means (ms)

http://dev.eleanorchodroff.com/apps/crosslgVOT

Linear relation

Long-lag VOT

Linear relation

Short-lag VOT

Linear relation

Negative VOT

Outline

1. Introduction

2. Cross-linguistic VOT survey
3. Uniformity constraint
4. Discussion
5. Future Directions

Uniformity constraint

Uniformity constraint

Within the phonetic grammar of a language/talker, the phonetic targets corresponding to a phonological feature value [aF] are (ideally) identical for all segments that are specified [aF]

Uniformity constraint

Applied to long-lag stops:
Within a language/speaker, duration and timing of glottal opening gesture relative to stop closure interval should be uniform for all stops specified [+s.g.]

Uniformity constraint

Previous research on VOT: Are place differences in VOT planned or automatic / mechanistic?

Several aerodynamic and biomechanical explanations for VOT variation by place of articulation

- Volume of cavity posterior and anterior to constriction
- Movement of articulators
- Extent of articulatory contact area
- Change of glottal opening area
- Fixed duration for glottal gesture timed relative to a single point in the closure

Maddieson 1997, Cho \& Ladefoged 1999
Claim that differences are automatic presupposes that, for all stops within a laryngeal series, phonetic targets for the laryngeal feature are uniform

Westbury \& Keating 1984, Keating 1985

Uniformity constraint

Can uniformity be reduced to other known effects and constraints on phonetic realization?

Talker physiology / aerodynamics

- Cross-linguistic evidence: even within a laryngeal subcategory (e.g., longlag), it is physically possible to produce [p^{h}] with a consistently longer VOT than [k^{h}]

Perceptual dispersion

- VOTs of stop categories within a laryngeal series are more similar to one another than would be predicted by dispersion alone

Uniformity constraint

Applies strongly to languages and speakers, thereby ensuring cross-talker relational invariance / restricting individual differences

Each point = pair of VOT means (ms) for a speaker of American English

Summary

Strong evidence for a uniformity constraint operating on the phonetic implementation of stop consonant laryngeal features

Evidence from VOT covariation cross-linguistically Evidence from VOT covariation across talkers of American English

Linear relation arises from underlying identity (or near-identity) in the phonetic implementation of laryngeal feature value within each series
\rightarrow Uniform duration and timing of glottal gestures (abduction and adduction) relative to supralaryngeal closure

Future directions

Role of contrast
\rightarrow Does uniformity apply as strongly to ‘unpaired' stops as to those with in minimal laryngeal contrasts (e.g., languages with /p t k/ but /b d/)

Examine cross-linguistic patterns for other features and segments
\rightarrow Is uniformity specific to stop VOT?
Evidence from fricatives in American English and Czech
Chodroff 2017
\rightarrow Do some languages deviate from uniformity (e.g., as the result of recent sound change)?

Relate to phonological theories of feature hierarchies
\rightarrow Identify natural classes (e.g., stops) strongly bound by uniformity

Thanks to...

Andries Coetzee (UMich), James Kirby (Edinburgh), Paul Morris (lowa), Sharon Rose (UCSD)
 for generously providing data

Doug Whalen (CUNY, Haskins)
Paul Smolensky (JHU, Microsoft)
Northwestern Phonatics
Berkeley Phonetics and Phonology Forum ("Phorum")
Northwestern University Postdoctoral Professional Development Travel Grant

Thank you!

