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Abstract: In the development of automatic speech recognition systems, achieving human-like performance has been a long-
held goal. Recent releases of large spoken language models have claimed to achieve such performance, although direct com-
parison to humans has been severely limited. The present study tested L1 British English listeners against two automatic
speech recognition systems (wav2vec 2.0 and Whisper, base and large sizes) in adverse listening conditions: speech-shaped
noise and pub noise, at different signal-to-noise ratios, and recordings produced with or without face masks. Humans main-
tained the advantage against all systems, except for Whisper large, which outperformed humans in every condition but pub
noise. VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Considerable evidence has demonstrated the deleterious impact of noise on speech recognition not only for humans (e.g.,
Brungart, 2001; Brungart et al., 2020; Miller and Nicely, 1955), but also for automatic speech recognition (ASR) systems
(e.g., Carey and Quang, 2005; Kim et al., 2024). Throughout the development of ASR systems, a clear goal has been to
achieve or even surpass human performance (the current gold standard) in speech recognition tasks, both with clean
speech and in noisy environments (Baevski et al., 2020; Radford et al., 2023). Determining whether this goal has been
achieved requires a direct comparison between humans and ASR systems. Early work consistently found that humans out-
performed machines on most tasks and across a range of conditions (Cutler and Robinson, 1992; Moore and Cutler, 2001;
see also Scharenborg, 2007 for an overview). In recent years, however, significant improvements have been made in ASR
performance, largely attributable to advances in deep learning. While these improvements have significantly narrowed the
performance gap between humans and ASR systems, this has yet to be tested across a wide range of conditions, particu-
larly those involving adverse listening conditions, such as background noise or speech produced with a face mask.

Our study compares the current performance of humans and state-of-the-art ASR systems in adverse listening condi-
tions to provide a more nuanced understanding of the performance gap between these two groups. Specifically, we test two state-
of-the-art ASR systems for English (wav2vec 2.0 and Whisper) against L1 British English listeners across several listening condi-
tions. These conditions are speech-shaped white noise (SSN) and pub noise at two signal-to-noise ratios (SNRs), 0 and 8dB, with
and without a face mask as produced by Southern Standard British English female speakers. The face mask condition was moti-
vated by the COVID-19 pandemic and its relevance to forensic speech science (Geng et al., 2023). Based on previous research on
humans, we expect poorer speech recognition in pub noise compared to SSN (Mi et al., 2013, where babble noise serves as a
proxy for pub noise), at higher noise levels (Brungart et al., 2020), and when a face mask is worn (Bottalico et al., 2020).

Prior to 2020, it was widely accepted that humans outperformed ASR systems in most tasks, including phoneme
identification (Sroka and Braida, 2005) and word identification (Carey and Quang, 2005; Lippmann, 1997), and with clean
speech (Cutler and Robinson, 1992; Leeuwen et al., 1995). As expected, the introduction of noise or a degraded speech
quality substantially reduced ASR performance (Carey and Quang, 2005; Sroka and Braida, 2005). Since 2020, however,
the rise of end-to-end deep neural architectures for ASR has led to dramatic improvements in word error rate (WER) in
both clean and noisy conditions (e.g., Baevski et al., 2020; Radford et al., 2023). Nevertheless, direct comparisons to
human performance have remained limited.

With respect to human comparisons, one of the original end-to-end neural ASR architectures, wav2vec 2.0
(Baevski et al., 2020), achieved impressive WERs, but was not tested against human speech recognition abilities. In
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contrast, the original paper introducing OpenAI’s Whisper (Radford et al., 2023), included a preliminary comparison with
human performance and found roughly comparable performance. The primary analysis compared Whisper against just
one transcriber in ideal studio conditions, while a secondary analysis compared Whisper against four professional tran-
scribers in 25 mixed variety speech recordings. Radford et al. (2023) further tested Whisper in various noise conditions,
including white noise and pub noise, with the latter simulating a more realistic noisy environment. As expected, increased
noise levels corresponded to reduced performance. However, similar WERs were observed across both noise types,
highlighting Whisper’s robustness to naturalistic background noise like pub noise. These results, however, were not directly
compared with human performance, leaving it unclear whether Whisper’s high performance in optimal studio conditions
would remain comparable in suboptimal, noisy conditions.

To our knowledge, the only other study to compare the effect of noise on human and machine performance
comes from Kim et al. (2024). Unlike Radford et al. (2023), Kim et al. (2024) evaluated multiple human listeners and sev-
eral end-to-end ASR systems (Whisper, Google Speech-to-Text, wav2vec 2.0, and HuBERT). Their study focused on tran-
scribing second language (L2) English speech mixed with speech-shaped noise (SSN) at SNRs ranging from –4 to 8 dB. Of
the four ASR systems tested, only Whisper large matched or exceeded human accuracy.

Despite advances made in Radford et al. (2023) and Kim et al. (2024), critical gaps remain in our understanding
of human-like ASR performance. Namely, it is unclear how ASR systems compare to humans in naturalistic noise settings
and with straightforward L1 speech transcription where the dialect matches that of the transcriber. While Radford et al.
(2023) provided insight into Whisper’s performance under noisy conditions, their comparison to human performance was
limited. Kim et al. (2024) compared many human listeners against modern ASR systems, but only tested L2 English speech
in speech-shaped noise. Humans and ASR systems are likely to perform better on L1 English in noise, possibly reducing
the performance gap between them. Additionally, no study has yet compared the performance degradation between
humans and ASR systems in more naturalistic noise conditions, such as pub noise or face mask speech.

The current study aims to evaluate modern ASR systems against human performance in adverse listening condi-
tions to identify current limitations of ASR systems and areas for improvement. Specifically, we compare L1 British
English speakers with wav2vec 2.0 and Whisper (base and large models) in transcribing L1 Southern Standard British
English speech. The test conditions include two noise types (speech-shaped noise and pub noise), two noise levels (0 and
8 dB), and two mask conditions (cotton mask and no mask).

2. Methods

2.1 Participants and models

2.1.1 Humans

Sixty native speakers of British English participated in the online experiment distributed via Prolific (Prolific, 2023). After
completing a consent form, participants underwent a headphone check (Milne et al., 2021) and filled out a demographic
questionnaire. To qualify, participants needed to be native British English speakers, over 18 years old, and with no hearing,
language, or learning disabilities. Participants were excluded if they did not meet the eligibility criteria, failed the head-
phone check, or did not proceed to the test trials. Eleven additional participants were excluded for these reasons.
Compensation was provided upon experiment completion.

2.1.2 Machines

Two openly available ASR systems, wav2vec 2.0 and Whisper, were used to transcribe audio files. Both the base size mod-
els (wav2vec2-base-960h1 and Whisper base2) and the large models (wav2vec2-large-960h3 and Whisper large-v34) were
set to transcribe in English. wav2vec 2.0 is a self-supervised encoder, trained and fine-tuned on all 960 h of the
LibriSpeech dataset, which contains North American English clean read speech (Panayotov et al., 2015). The base and
large models differ in the number of parameters (Baevski et al., 2020). Whisper, an encoder-decoder architecture trained
via weak supervision, was trained on 680 000 h of multilingual labeled data for the base model, with approximately 65% of
the data in English. No details were provided about noise in the training data. Whisper large-v3, used for the large model,
was trained on 1 million hours of labeled multilingual speech and 4 million hours of speech generated by Whisper large-
v2 (Hugging Face, 2024).

2.2 Stimuli

The stimuli were produced in a sound-treated room by three female speakers of Southern Standard British English. A
multi-speaker design was employed to ensure that any observed effects were not specific to a single speaker. Across the
three speakers, 40 sentences were recorded: 20 without a face mask and 20 with a two-layer cotton mask. The sentences
were drawn from low-predictability carrier phrases sourced from Kalikow et al. (1977) and contained, at minimum, a sub-
ject noun or pronoun, a verb, and a final noun that formed a minimal pair known to cause confusion in everyday speech:
e.g., /f/ and /s/, /f/ and /h/, /p/ and /k/, /p/ and /h/ and /s/ and /S/. For instance, “The girl spoke about the fun/sun.” The
sentences otherwise varied in syntactic form. Read speech was chosen to maintain control over the material and to
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minimize the semantic and syntactic predictability of the sentences. The stimuli did contain a high proportion of proper
names and homophones (addressed in Sec. 2.4.2).

To assess the effects of different background noise types and cotton mask speech, studio-quality recordings were
mixed with SSN and pub noise. The SSN was derived from the 40 sentences, while the pub noise, sourced from Islabonita
(2013), featured multiple speakers talking in a pub along with sounds typical of a restaurant, such as plates, glasses, and
cutlery. Despite variation in the noise sources, the sound pressure level varied only marginally around 70 dB. We acknowl-
edge that realistic background noise can be more variable, involving multiple sound sources at different levels, which can
affect word recognition to varying degrees (Barker et al., 2015).

The background noise was mixed with the clean recordings at two SNRs: 0 dB, where the noise and speech are at
the same loudness; and 8dB, where the speech is 8 dB louder than the noise. Although mixing clean speech with noise is some-
what artificial, this method was implemented to ensure that each sentence was consistently affected by noise. Only two SNR
levels were used due to experimental constraints, but these levels still represent distinct degrees of challenging listening condi-
tions. The background noise was added using a custom Praat script (Harrison, 2022; Boersma and Weenink, 2023).

To mitigate differences in vocal intensity between speakers, all stimuli were normalized to 70 dB before mixing
with noise. The recordings were resampled to 16 kHz and converted to MP3 format, meeting the requirements of the ASR
systems and the experiment builder.

2.3 Procedure

The human experiment was designed using the online experiment builder Gorilla (Anwyl-Irvine et al., 2020) and distrib-
uted via Prolific. Participants heard a total of 40 trials in only one SNR level (either 0 or 8 dB). Within their assigned SNR,
participants were presented, in a random order, with an equal number of (i) SSN and pub noise sentences and (ii) no
mask and cotton mask speech. All three speakers were represented at roughly equal rates, and participants heard each sen-
tence only once. Before beginning the test trials, participants completed a demographic questionnaire and headphone
check. Those who passed the check received instructions and completed three practice trials. Participants were instructed
to transcribe the sentences as accurately as possible, paying attention to spelling. They were also asked to adjust the vol-
ume to a comfortable level during the practice trials, after which they were to keep the same volume throughout the exper-
iment. Each sentence could be played only once, and transcriptions could not be edited after submission.

For machines, each sentence was transcribed by both base models (wav2vec2-base-960h and Whisper base) and
large models (wav2vec2-large-960h and Whisper large-v3).

2.4 Performance evaluation

2.4.1 WER analysis

WER was calculated based on the number of substitutions, insertions, and deletions between the transcriber-provided tran-
script and the reference transcript. Before analysis, all punctuation and extra spaces were removed from the transcriptions.
A statistical assessment of WER was then conducted using a Bayesian gamma mixed-effects regression model using the
brms package in R (B€urkner, 2017; R Core Team, 2023). A separate model was run for each model size: one comparing
humans to wav2vec 2.0 base and Whisper base and one comparing humans to wav2vec 2.0 large and Whisper large. Each
model included fixed effects for noise type, noise level, mask, and transcriber with all interactions, along with a random
intercept for file and speaker. Noise type, noise level, and mask were sum-coded, while transcriber was treatment-coded
with the human transcriber level as the baseline. Effects were considered reliable in their direction if the 95% credible
interval (CI) of the posterior distribution excluded 0. Further details about the model specifications can be found in the
supplementary material.

2.4.2 Correction for proper names and homophones

Although WER is a useful metric for assessing transcription performance, it does come with limitations, including equal
treatment of errors in content and function words and potential overestimation of inaccuracy due to variations in spelling
for homonyms or proper names. In response to the latter issue, a modified set of transcriptions (subsequently referred to as
the “corrected analysis”) was produced by two native English speakers. Spellings of homonyms were standardized, as were
proper names, provided the spelling suggested a phonological relationship to the original name (e.g., Elisa or Alyssia for
Alicia, pronounced as [ElIsia]). The primary analysis used the raw, uncorrected WER, but a secondary analysis was imple-
mented using the corrected WER. These results are discussed briefly and can be found in the supplementary material.

3. Results

The data, analyses, and model outputs for the raw and corrected transcripts can be found on OSF.5

3.1 Base models

The noise type, noise level, their interaction, and the presence of a face mask reliably impacted WER for human transcrib-
ers (see Fig. 1). The pub noise, a 0 dB SNR, and the presence of a face mask increased WER relative to average and the
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respective opposing level (pub noise vs SSN: b¼ 0.47, 95% CI: [0.35, 0.59]; 0 vs 8 dB: b¼ 0.51, 95% CI: [0.38, 0.63]; face
mask vs no mask: b¼ 0.30, 95% CI: [0.18, 0.42]). In addition, WER in pub noise at the 0 dB level was reliably worse than
average (0 dB� pub noise: b¼ 0.22, 95% CI: [0.10, 0.34]). Human transcribers reliably outperformed wav2vec 2.0 and
Whisper base models (wav2vec2: b¼ 1.84, 95% CI: [1.45, 2.26]; Whisper: b¼ 1.09, 95% CI: [0.70, 1.51]). No other credible
interactions were observed, suggesting that the individual effects were consistent in their influence on WER between
humans and machines.

3.2 Large models

As the data for the human transcribers remained the same for this comparison, the major changes in results involve the inter-
actions with wav2vec 2.0 and Whisper (see Fig. 2). Human transcribers still reliably outperformed the large version of wav2vec
2.0 (b¼ 1.83, 95% CI: [1.42, 2.27]), and the lack of reliable interactions between wav2vec 2.0 and additional factors indicated
that the overall influence of noise type, noise level, and face mask was not reliably different from humans. In contrast, Whisper
outperformed human transcribers across almost all conditions (b¼�0.69, 95% CI: [�1.10, �0.25]), except in the influence of
noise type: Whisper took a particularly large hit in transcribing speech in pub noise, effectively putting its performance on par
with humans (b¼ 0.44, 95% CI: [0.02, 0.87]). No other interactions were reliable in their direction.

3.3 Corrected WER analyses

Following correction for proper names and homonyms, a few differences emerged in the results for the base and large
sizes, although the patterns were largely the same. For the base models, humans still outperformed wav2vec 2.0 and
Whisper. For the large models, humans still outperformed wav2vec 2.0, and Whisper still outperformed humans, except in
pub noise. Relative to humans, wav2vec 2.0 improved in the pub noise and 0 dB conditions, and Whisper improved

Fig. 1. The distribution of WER for the base raw results. Results are presented according to the transcriber (from left to right: Human, wav2-
vec 2.0, Whisper). Mask condition is specified along the x axis. Noise conditions are grouped by color and shade.

Fig. 2. The distribution of WER for the large raw results. Results are presented according to the transcriber (from left to right: Human, wav2-
vec 2.0, Whisper). Mask condition is specified along the x axis). Noise conditions are grouped by color and shade.

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 4 (11), 115204 (2024) 4, 115204-4

 13 N
ovem

ber 2024 21:35:50

https://scitation.org/journal/jel


considerably in the face mask condition, except in pub noise. These differences were, however, minor. The full analyses
can be found in the supplementary material.

4. Discussion

For both humans and the tested ASR systems, WER increased in the presence of pub noise, a 0 dB SNR, and face mask
speech. Humans outperformed both wav2vec 2.0 and Whisper base versions; and while humans outperformed wav2vec 2.0
large, Whisper large exceeded human performance. The only exception to this was in pub noise, where Whisper large was
comparable to human performance. The present study evaluated performance on a mainstream dialect of English, a condi-
tion where both L1 listeners and the tested ASR systems were expected to perform well.6 Compared to Kim et al. (2024),
who examined the difference between humans and ASR systems on L2 English, overall WERs were considerably lower for
L1 English. Contrary to our predictions, however, the magnitude of the difference between humans and ASR systems was
similar for both L1 and L2 English.

These findings have important implications for ASR development and our understanding of the differences
between human speech perception and ASR capabilities. The gap between human and machine speech recognition has
been a long-standing topic of discussion, particularly for modular ASR systems (e.g., Scharenborg, 2007; Moore and
Cutler, 2001). As demonstrated by the present study, the performance gap between humans and machines has been sub-
stantially narrowed, and in some cases, even bridged. Nonetheless, direct comparisons between human and machine
speech recognition continue to provide valuable insights into areas for ASR enhancement, while also highlighting notewor-
thy similarities and differences among the speech recognition processes.

4.1 The effect of noise

In line with expectations, both the degree and type of noise were challenging for humans and machines. The impact of
SNR (an 8 dB difference) on speech recognition was comparable to the effect of noise type for both groups.

Transcribing speech in pub noise was substantially more difficult compared to speech in speech-shaped noise.
While it might seem intuitive for ASR systems to respond similarly to humans, this is not guaranteed. Pub noise has high
temporal variation in the spectrum, which can lead to increased masking of the speech content; in turn, speech-shaped
noise is steady-state with regular masking of energy, but less masking of information content (Zhang et al., 2021). Despite
wav2vec 2.0’s overall lower transcription performance, the ASR systems mirrored human behavior in their response to
speech in noise, even though their architectures and training data differed significantly, particularly given that wav2vec 2.0
was not trained on noisy speech.

Moreover, the difference between noise types was unexpected for the ASR systems, particularly given that
Radford et al. (2023) found similar results for Whisper in both SSN and pub noise conditions. Their study tested Whisper
on the clean test set of the LibriSpeech ASR Corpus (Panayotov et al., 2015) mixed with static white noise and pub noise
from the Audio Degradation Toolbox in MATLAB (Mauch and Ewert, 2013) at 0 dB SNR. Static white noise yielded a WER
of approximately 17%, whereas pub noise yielded only a marginally higher WER of around 18% (estimated from Radford
et al., 2023, p. 8, their Fig. 5). In contrast, the present study observed a higher WER for stimuli mixed with 0 dB pub noise
(mean WER¼ 44%), even when using the largest Whisper model. This discrepancy could be due to differences in the exact
pub noise recordings or the speech recordings used in the two studies.

To explore this discrepancy, we mixed our speech recordings with the same pub noise recording used in
Radford et al. (2023) and re-tested the Whisper large model. As shown in Fig. 3, this pub noise yielded WERs comparable
to those in the current study, but higher than those originally reported in Radford et al. (2023). The likely explanation for
the increased WER thus appears to be the difference in the speech stimuli used across the two studies.

The similar performance patterns in response to noise suggest key commonalities between humans and ASR sys-
tems. Even Whisper large, which generally outperformed human transcription abilities, struggled with the 0 dB pub noise

Fig. 3. The distribution of WER for Whisper large-v3 when transcribing our speech data mixed with our pub noise and the pub noise used in
Radford et al. (2023). Noise level is specified along the x axis. Noise type is grouped by color and shade.
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condition. By directly comparing humans and ASR systems using the same stimuli and controlled conditions, we can
more precisely quantify both the strengths and limitations of ASR systems in recognizing speech under adverse listening
conditions. Overall, these findings highlight the need for further testing ASR systems across a range of noise types and lev-
els (e.g., fluctuating noise, such as pub noise, multi-talker babble, or street noise).

4.2 Qualitative analysis of error types

A notable difference between the systems emerged in the types of errors produced. A post hoc qualitative analysis was con-
ducted on the error types, with a focus on the 0 dB, pub noise, face mask condition (in principle, the most difficult listen-
ing condition). The analysis showed that humans generally maintained grammaticality and transcribed in English, i.e.,
Aliasara was chatting about the story (intended: Olivia was chatting about the cartridge). Whisper exhibited similar errors,
producing grammatically correct, even if inaccurate phrases, i.e., Hi, Elena. How’s it going? (intended: I hope Elena asked
about the cell). In contrast, wav2vec 2.0 often produced gibberish outputs, i.e., i a mas taking about so wer (intended:
Elena was talking about sailing), even with the large model size. This difference likely stems from wav2vec 2.0’s character-
level predictions, as opposed to Whisper’s word-level predictions. Across conditions, wav2vec 2.0 was more prone to
ungrammatical or incoherent responses, whereas humans and Whisper generally adhered to English lexical choices and
grammatical structure. These distinctions have implications for detecting machine-generated responses and further under-
standing the nuances between human and machine speech recognition.

5. Conclusion

The primary goal of this study was to better understand the performance boundaries of human and ASR systems (wav2vec
2.0 and Whisper) in recognizing speech under adverse, yet naturalistic, listening conditions. For human participants, pub
noise, a 0 dB SNR, and face mask conditions reliably increased WER compared to less challenging conditions. Both wav2-
vec 2.0 and Whisper base models performed worse than human participants across all scenarios. However, while humans
outperformed wav2vec 2.0 large, Whisper large outperformed human participants in all conditions except pub noise, where
the two performed comparably. These results have important implications for advancing ASR technology and enhancing
our understanding of human vs machine speech recognition.

Supplementary Material

See the supplementary material at https://osf.io/vqwu5/?view_only¼effeebc4f9dd44258730f96584d74576, which includes
the data, code, analysis, stimuli, and experimental manipulations.
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