Northwestern

Delayed effects of speech and non-speech stimuli on sibilant categorization Eleanor Chodroff¹ and Colin Wilson²

¹Department of Linguistics, Northwestern University, ²Department of Cognitive Science, Johns Hopkins University

Introduction

Adaptation to the speech of a novel talker can involve at least two types of mechanism: perceptual adaptation to phonetic properties and spectral contrast effects.

Previous studies have demonstrated that listeners can adapt to talker- or dialect-specific properties of fricatives e.g., Norris et al. 2003, Kraljic & Samuel 2005, Eisner & McQueen 2006, vowels e.g., McQueen & Mitterer 2005, Maye et al. 2008, Reinisch & Sjerps 2013, Chladkova et al. 2017, and stops e.g., Kraljic & Samuel 2006, Nielsen 2007, Theodore et al. 2010.

Moreover, perceptual adaptation to properties of speech has been shown to persist over long periods of time.

- 25 minutes between exposure and test: [s]-[]] Kraljic & Samuel 2005
- 12 hours between exposure and test: [s]-[f] Eisner & McQueen 2006

Strong effects of nonspeech stimuli have also been found on perception of following speech sounds e.g., Lotto & Kluender 1998, Holt 2005, Laing et al. 2012, Huang & Holt 2012

The longest attested period for nonspeech effects on speech adaptation is 1.3 seconds, but longer periods have not yet been tested. Holt 2005

Accounts of phonetic- and auditory- based adaptation make similar predictions regarding the expected direction of adaptation:

Covariation-based adaptation

• Listeners infer talker-specific parameters for each sound in a way that takes into account covariation of category cues. Ex. If observe high COG [z], infer high COG [s]

Data from Jongman et al., 2000

Contrast-based adaptation

- *High* frequency energy in a preceding sound should enhance low frequency energy present in a subsequent sound (and vice versa), shifting perception contrastively
- Adaptation should occur only when context sounds have energy in the frequency ranges that are relevant for perception (discrimination or categorization) of targets
- Non-speech contexts should elicit the same effects as matched speech context

Can phonetic and auditory mechanisms be distinguished by introducing a substantially longer delay between exposure and test in adaptation to the [s]-[f] contrast?

Chodroff 2017, Chodroff & Wilson, in prep [**[**]-[s] categorization after white **noise exposure** (1.4 s delay) COG ← high COG <mark>→</mark>high white noise 4 5 6 7 8 9 10

Listeners less likely to respond [s] after speech than noise in the first half. Listeners less likely to respond [s] after high than low COG exposure in the first half.

A speech-only model revealed that listeners were significantly less likely to respond [s] after high COG [z] exposure than low COG [z] exposure in the first half. A noise-only model revealed no significant effect of condition (high vs low COG noise) in either half of the experiment.

JOHNS HOPKINS

References (selected)

Chodroff, E. (2017). Structured variation in obstruent production and perception. PhD Thesis. / Chodroff, E., & Wilson, C. (in prep). Auditory and acoustic-phonetic mechanisms of adaptation in the perception of sibilant fricatives. / Eisner, F., & McQueen, J. M. (2006). Perceptual learning in speech: Stability over time (L). JASA, 119(4), 1950-1953. / Holt, L. L. (2005). Temporally nonadjacent nonlinguistic sounds affect speech categorization. Psych. Sci., 16(4), 305-312. / Kraljic, T., & Samuel, A. G. (2005). Perceptual learning for speech: Is there a return to normal? Cog. Psych., 51(2), 141-178. / Lotto, A. J., & Kluender, K. R. (1998). General contrast effects in speech perception: Effect of preceding liquid on stop consonant identification. Perception & Psychophysics, 60(4), 602-619. / Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cog. Psych., 47(2), 204-238.