# Burst Spectrum as a Cue to Stop Consonant Voicing

**English Production and Perception Results** 

Eleanor Chodroff and Colin Wilson Johns Hopkins University Summerfield and Haggard (1977), Lisker (1978), Repp (1979), Lisker (1986)

voice onset time F1 onset F1 onset F1 transition  $F_0$  contour relative amplitude of aspiration following vowel duration spectral shape of the burst:

*lower* frequencies for *voiced* stops



"Since most of our lax [voiced] stops were pronounced with vocal-cord vibration, their spectra contained a strong low-frequency component...

The lax stops also show a significant drop in level in the high frequencies. This high-frequency loss is a consequence of the lower pressure associated with the production of lax stops and is therefore a crucial cue for this class of stops."

Halle, Hughes, and Radley (1957)

### Background: Production



- + = Zue (1976) using peak frequency
- ✤ = Parikh and Loizou (2005) using peak frequency
- = Sundara (2005) using mean frequency (CoG)

see also Van Alphen and Smits (2004), Vicenik (2010), Kirkham (2011)

# Background: Production

# production study laboratory and TIMIT experiments

/p,t,k,b,d,g/ x /i,ı,e, $\varepsilon$ ,æ,,a,o,o,u/ x /t/



N=18 (4 male) resampled at 16kHz pre-emphasized above 1000Hz high-pass filtered at 200Hz segmented from transient to voicing

# Laboratory Production: Methods



- Computed 64-point FFT for 7 consecutive 3ms Hamming windows, shifted by 1ms
- 7 PSDs averaged to give a smoothed spectrum
- Center of Gravity (CoG) calculated from smoothed spectrum: amplitude-weighted mean frequency

$$CoG = f_1 p(1) + ... + f_{32} p(32)$$

# Laboratory Production: Measurement



Laboratory Production: Results

 $\begin{array}{ll} \mbox{Mixed-effects linear regression} \\ \mbox{Fixed effects sum-coded and maximal random effect structure} \\ & \ voice & \ \beta_{voice} = 122, \ p < .01 \\ & \ \times \ place & \ \beta_{labial} = -633, \ p < .001; \ \beta_{coronal} = 916, \ p < .001 \\ & \ \times \ gender \ \beta_{gender} = 86, \ p < .01 \end{array}$ 

Significant interactions examined with post-hoc comparisons

|        | labial                                                        | coronal                                                      | dorsal |  |
|--------|---------------------------------------------------------------|--------------------------------------------------------------|--------|--|
| male   | $\beta_{voice} = 224$<br>p < .001                             | $egin{aligned} \beta_{voice} &= 224 \ p < .05 \end{aligned}$ | n.s.   |  |
| female | $egin{aligned} \beta_{voice} &= 253 \ p < .001 \end{aligned}$ | n.s.                                                         | n.s.   |  |

Crucially, the pattern of significance remains the same when tokens with glottal pulses near the release are excluded.

# Laboratory Production: Analysis

#### Byrd (1993), Keating et al. (1993)

#### 630 different AE speakers Word-initial, pre-vocalic /p, t, k, b, d, g/ Words with high token freq. removed (*too, to, do, carry, dark*)

| Phoneme | Tokens | Phoneme | Tokens |
|---------|--------|---------|--------|
| /p/     | 661    | /b/     | 668    |
| /t/     | 579    | /d/     | 547    |
| /k/     | 1179   | /g/     | 415    |





## TIMIT: Results

Significant interactions examined with post-hoc comparisons

|        | labial                                   | coronal                                  | dorsal                                         |
|--------|------------------------------------------|------------------------------------------|------------------------------------------------|
| male   | $\beta_{\text{voice}} = 555$<br>p < .001 | $\beta_{\text{voice}} = 460$<br>p < .001 | $(\beta_{voice} = 112 \ p < .001)$             |
| female | $\beta_{\text{voice}} = 396$ $p < .001$  | $\beta_{\text{voice}} = 280$<br>p < .001 | $(\beta_{\text{voice}} = 113 \text{ p} < .05)$ |

Crucially, the pattern of significance remains the same, except for the dorsals, when tokens with glottal pulses near the release are excluded.

# TIMIT: Analysis

# perception study laboratory and Mechanical Turk experiments

/t/-burst VOT continuum

/d/-burst VOT continuum

Trading relation between burst and VOT

Keating (1979) Nittrouer (1999) Caldwell and Nittrouer (2013)

## Background: Perception







Order of labial and coronal conditions counterbalanced

Within condition: 8 blocks of 14 stimuli in random order

Laboratory Perception: Methods and analysis









Crowdsourcing service increasingly used in psycholinguistics and phonetic studies

Greater diversity in participant population and listening conditions (noise!)

Labials 12 headphones 3 external speakers 1 internal speakers Coronals 9 headphones 4 external speakers 3 internal speakers

# Mechanical Turk: Methods



### Mechanical Turk: Results



Mechanical Turk: Results

Spectral shape of the burst is a cue to anterior stop consonant voicing

Higher CoG for voiceless labials and coronals

Spectral shape influences voicing identification



Repp (1978), Allopenna et al. (1998), Benkí (2001), Stevens (2002), McMurray et al. (2008a)

Place and voice perception are interdependent

Cues to phonetic distinctions at burst landmark

Early cue to voicing and incremental perception



# Thank you!





#### Production: Results by Gender



Mechanical Turk: Results



Mechanical Turk: Results

| Study                     | Language    | Measure | /p/  | /b/  | /t/  | /d/  | /k/  | /g/  |
|---------------------------|-------------|---------|------|------|------|------|------|------|
| Zue 1976                  | Am. English | Peak    |      |      | 3600 | 3300 | 1940 | 1910 |
| Parikh and Loizou 2005    | Am. English | Peak    | 1910 | 1163 | 5649 | 5225 | 2261 | 2268 |
| Sundara 2005              | Ca. English | CoG     |      |      | 4900 | 4400 |      |      |
| Kirkham 2011              | Br. English | CoG     |      |      | 5220 | 4888 |      |      |
| Van Alphen and Smits 2004 | Dutch       | CoG     | 1160 | 830  | 3540 | 2140 |      |      |
| Sundara 2005              | Ca. French  | CoG     |      |      | 3800 | 3000 |      |      |
| Vicenik 2010              | Georgian    | CoG     | 4000 | 3200 | 5300 | 4600 | 3100 | 3100 |

CoG = Center of Gravity (mean frequency)

# Background: Production