
Praat Scripting Tutorial

Eleanor Chodroff

Newcastle University July 2019

Praat

Acoustic analysis program

Best known for its ability to:
Visualize, label, and segment audio
files
Perform spectral and temporal
analyses
Synthesize and manipulate speech

Praat Scripting

Praat: not only a program, but also a language

Why do I want to know Praat the language?

AUTOMATE ALL THE
THINGS

Praat Scripting

Why can’t I just modify others’ scripts?

Honestly: power, flexibility, control

Insert: all the gifs of ‘you can do it’ and ‘you got this’ and thumbs up

Praat Scripting Goals

~*~Script first for yourself, then for others~*~

• Write Praat scripts quickly, effectively, and “from scratch”
• Learn syntax and structure of the language

• Handle various input/output combinations

Tutorial Overview
1) Praat: Big Picture
2) Getting started
3) Basic syntax
4) Script types + Practice
• Wav files
• Measurements
• TextGrids
• Other?

Praat: Big Picture
1) Similar to other languages you may (or may not) have used

before
• String and numeric variables
• For-loops, if else statements, while loops

• Regular expression matching
• Interpreted language (not compiled)

2) Almost everything is a mouse click!

i.e., Praat is a GUI scripting language
GUI = Graphical User Interface, i.e., the Objects
window

If you ever get lost while writing a Praat script,
click through the steps using the GUI

Praat: Big Picture

Getting Started

Open a Praat script

From the toolbar, select Praat à New Praat script

Save immediately!
Save frequently!

Script Goals and Input/Output

• Consider what you want the script to accomplish
• Identify what you’ll need to read in (input) and what you’ll need to

write out (output)

Input:
Audio file
TextGrid
Text file

Output:
Audio file
TextGrid
Text file

• Write summary and pseudo code

Variables
Selecting objects

String concatenation
Comments
Whitespace

For-loops + if else statements
Syntax
Regex

Some Basics

Variables

All variables must start with a lower-case letter
Define variables with equal sign (=)
Refer to variables as arguments directly

dir$ = "/Users/Eleanor/mydir/data/"
filename$ = Get string: i
nFiles = Get number of strings
myTotal = 20

String Variables

• Name ends with $
• Defined by quotes or the output of a command

dir$ = "/Users/Eleanor/mydir/data/"
filename$ = Get string: i
nFiles = Get number of strings
myTotal = 20

Numeric Variables

• Name does not have $

dir$ = "/Users/Eleanor/mydir/data/"
filename$ = Get string: i
nFiles = Get number of strings
myTotal = 20

Literals

• String literals go in quotes
• Numbers are numbers

dir$ = "/Users/Eleanor/mydir/data/"
filename$ = Get string: i
nFiles = Get number of strings
myTotal = 20

Selecting objects
selectObject: “Strings files”
plusObject: “TextGrid “ + basename$
minusObject: “Sound “ + basename$
select all
Remove

• Recall that Praat scripts simulate the user actions!
• You’ll need to instruct the script to select and remove objects from the

Objects window

String concatenation

basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"

• Concatenate strings with +
• Remove part of string with -

Comments
my comment - path to files
dir$ = "/Users/Eleanor/mydir/data/”

• Hash symbol (#) at the beginning of a line
• Cannot use # symbol midline

This will not work:

dir$ = "/Users/Eleanor/mydir/data/" #"/Users/Mary/mydir/data"

Whitespace
Praat is NOT whitespace sensitive
• At one point, it was sensitive to trailing spaces or tabs at the end of

a line
• Doesn’t look like this is the case with the new syntax

Convention and your eyes call for standard use of whitespace
• Code-block indentation
• Spaces around equal signs and after punctuation such as colons

and commas

for-loops
for i from 1 to nFiles

mycode
endfor

for integerVariable from 1 to integerVariable2
writeSomeCode

endfor

if else statements

if i < 20 and word$ = “STIM”
do this

elsif i = 20 and not word$ = “STIM”
do that

else
do this

endif

For more logical operators: http://www.fon.hum.uva.nl/praat/manual/Formulas_2__Operators.html

Basic Syntax

Extract part: 0.01, 1.1, “rectangular”, 1.0, “no”

• Almost every command and its argument
structure are in the Objects window à just click
through it

• … becomes :

Basic Syntax

• Arguments are separated by commas
• Any string input must be surrounded by quotes
• Multiple choice input: Must specify one of the given options
• Checkbox input: “yes” or “no”

Extract part: 0.01, 1.1, “rectangular”, 1.0, “no”

Basic Syntax

Cheat with this trick!

Within a Praat script, you can use Edit à Paste History
to reveal everything you’ve just clicked through

Regex
"files", dir$ + "*.wav"

• Praat uses fairly standard regex (regular expressions) for matching
strings

• For complete list, check out
http://www.fon.hum.uva.nl/praat/manual/Regular_expressions_1__S
pecial_characters.html

• We’ll go over more of these throughout the tutorial
• See also the appendix for a thorough (but probably not complete)

list

http://www.fon.hum.uva.nl/praat/manual/Regular_expressions_1__Special_characters.html

Boilerplate Code

Most Praat scripts can be written with a formulaic structure

It’s not necessarily the most concise code, but it is very effective,
especially for beginners

Boilerplate
• Header for inputs/outputs
• for-loop to process files

Boilerplate Code
dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
…

endfor

Boilerplate Code

Place all paths, input and
output files, and global

variables at the top of the file

dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
…

endfor

Boilerplate Code
Set up the for-loop

dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
…

endfor

Boilerplate Code

Read in each file

dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
…

endfor

Core types of Praat scripts

Modifying audio files
Taking temporal measurements
Taking spectral measurements

Creating TextGrids
Modifying TextGrids

Miscellaneous

Let’s start Praat scripting

Why start here?

Modifying audio files

Input = audio
Output = audio

In most cases, getting the audio is easy

Common procedures:

Modifying audio files

Scaling intensity
Resampling

Bandpass filtering
Extract one channel (convert to mono)

Scale intensity script
dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
…

endfor

Scale intensity script
dir$ = "/Users/Eleanor/Dropbox/PraatScriptingTutorial/allsstar/"

Create Strings as file list: "files", dir$ + "*.wav"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
pauseScript: "let’s take a look"

endfor

Scale intensity script
for i from 1 to nFiles

selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
pauseScript: "let’s take a look”
Scale intensity: 70

endfor

Scale intensity script
for i from 1 to nFiles

selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
#pauseScript: "let’s take a look”
Scale intensity: 70
Save as WAV file: dir$ + basename$ + "_scaled.wav"

endfor

Scale intensity script
for i from 1 to nFiles

selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".wav"
Read from file: dir$ + basename$ + ".wav"
#pauseScript: "let’s take a look”
Scale intensity: 70
Save as WAV file: dir$ + basename$ + "_scaled.wav"
Remove

endfor

Do another or move on?

Modifying audio files

Scaling intensity
Resampling

Bandpass filtering
Extract one channel (convert to mono)

Core types of Praat scripts

Modifying audio files
Taking temporal measurements
Taking spectral measurements

Creating TextGrids
Modifying TextGrids

Miscellaneous

Let’s start Praat scripting

Input: TextGrid
No audio – woo this will be super fast!

*Whenever possible, avoid loading audio files

Output: Text file

Temporal Measurements

Key concepts:
Looping through intervals in a TextGrid

If else statements
Writing a text file

Temporal Measurements

First script: get duration of file

You can get this directly from an audio file’s TextGrid

Temporal Measurements

Script outline:
Read in TextGrid

Get duration
Write filename and duration to text file

Temporal Measurements
dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*fave.TextGrid"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid"
…

endfor

Temporal Measurements
dir$ = "/Users/Eleanor/mydir/data/"
outfile$ = "/Users/Eleanor/mydir/data/durations.txt”

Create Strings as file list: "files", dir$ + “fave.TextGrid"
nFiles = Get number of strings

Temporal Measurements

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid"
dur = Get total duration
pauseScript: dur

endfor

Temporal Measurements

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid"
dur = Get total duration
appendFileLine: outfile$, filename$, tab$, dur
Remove

endfor

Success! You read in a TextGrid and wrote to a Text File
using appendFileLine:

Temporal Measurements

Next script: get durations of all intervals of every instance
of some word (you choose – make it relatively frequent)

Temporal Measurements

Script outline:
Read in TextGrid with word tier (called “Speaker – word”)

Loop through each word interval
Stop when interval label matches critical word

Get start time of interval
Get end time of interval

Calculate duration
Write to filename, duration to text file

Temporal Measurements
dir$ = "/Users/Eleanor/mydir/data/"

Create Strings as file list: "files", dir$ + "*fave.TextGrid"
nFiles = Get number of strings

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid"
…

endfor

Temporal Measurements
dir$ = "/Users/Eleanor/mydir/data/"
outfile$ = "/Users/Eleanor/mydir/data/thatDurations.txt”

Create Strings as file list: "files", dir$ + “fave.TextGrid"
nFiles = Get number of strings

Temporal Measurements

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid”
get number of intervals on word tier
nInt = Get number of intervals: 2
for j from 1 to nInt

…
endfor

endfor

Temporal Measurements

for i from 1 to nFiles
selectObject: "Strings files"
filename$ = Get string: i
basename$ = filename$ - ".TextGrid"
Read from file: dir$ + basename$ + ".TextGrid”
get number of intervals on word tier
nInt = Get number of intervals: 2
for j from 1 to nInt

label$ = Get label of interval: 2, j

endfor
endfor

Temporal Measurements

get number of intervals on word tier
nInt = Get number of intervals: 2
for j from 1 to nInt

label$ = Get label of interval: 2, j
if index_regex(label$, “THAT”)

get duration
write duration to file

endif
endfor

Temporal Measurements

get number of intervals on word tier
nInt = Get number of intervals: 2
for j from 1 to nInt

label$ = Get label of interval: 2, j
if index_regex(label$, “THAT”)

pauseScript: label$
start = Get starting point: 2, j
end = Get end point: 2, j
dur = end – start

endif
endfor

Temporal Measurements

get number of intervals on word tier
nInt = Get number of intervals: 2
for j from 1 to nInt

label$ = Get label of interval: 2, j
if index_regex(label$, “THAT”)

pauseScript: label$
start = Get starting point: 2, j
end = Get end point: 2, j
dur = end – start
appendFileLine: outfile$, filename$, tab$, dur

endif
endfor
Remove

Temporal Measurements

Looped through text file
Used if else statement
Used regex matching

Input: Audio file and TextGrid
Output: Text file

Processes
Get intensity (dB)

Get root-mean-square

Intensity Measurements

Input: Audio file and TextGrid
Output: Text file

Common measures
Formants

f0
Spectral peak

Spectral Measurements

Input: audio file
Output: empty or almost empty TextGrid

Creating TextGrids (simple)

Input: audio file
Output: empty or almost empty TextGrid

Create Empty TextGrid

Maybe you know the structure of the sound

For instance: each sound is flanked by 20
ms of silence and the critical (middle)

interval can be labeled with the filename

Create TextGrid with highly
predictable boundaries

View and Edit the TextGrid by looking for
highly predictable words

-or-
Delete boundaries or change text in a very

predictable way

Input: Audio file and TextGrid
Output: modified TextGrid

Modify TextGrid (simple)

Working with the TextGrid overview
More boilerplate: loop through intervals

Modify TextGrid (simple)

code

Modify TextGrid (simple)

Create/modify TextGrids (v2)
Input: Text file and possibly TextGrid

Output: TextGrid

Example scenario:
You have a text file of start and end times
for each condition and want to add a tier

with those labels

To Formant (burg): 0.01, 5, 5500, 0.025, 50
selectObject: “Formant ” + basename$
f1_0 = Get value at time: 1, start, “Hertz”, “Linear”
f2_0 = Get value at time: 2, start, “Hertz”, “Linear”
f3_0 = Get value at time: 3, start, “Hertz”, “Linear”
f1_5 = Get value at time: 1, start + 0.005, “Hertz”, “Linear”
f2_5 = Get value at time: 2, start + 0.005, “Hertz”, “Linear”
f3_5 = Get value at time: 3, start + 0.005, “Hertz”, “Linear”
f1_10 = Get value at time: 1, start + 0.01, “Hertz”, “Linear”
f2_10 = Get value at time: 2, start + 0.01, “Hertz”, “Linear”
f3_10 = Get value at time: 3, start + 0.01, “Hertz”, “Linear”

Spectral Measurements

Extract Sounds
Input: Audio file and TextGrid

Output: Audio file (and TextGrid)

Create Sounds
Input: nothing! Or existing audio file

Output: Audio file

Other loops
Repeat loop

repeat
word$ = Get label of interval: 1, i
i = i + 1

until word$ = ”STIMULUS”

While loop
while i < 20

do this
endwhile

Regex Appendix
if label$ == “THE”

Matches “THE” and only “THE” (not “OTHER”, “THEN”, etc.)
== evaluates equality

if label$!= “THE”

Matches anything that is not an exact match to “THE”

if index_regex(label$, “THE”)

Matches strings that contain the string “THE” (matches “THEN”, ”OTHER”, etc.)

Regex Appendix
if index_regex(label$, “^THE”)

Matches strings that start with “THE”
if index_regex(label$, “NG$”)

Matches strings that end with “NG”
if index_regex(label$, “(THE|NORTH)”)

Matches strings that contain either the string “THE” or “NORTH”

Regex Appendix
if index_regex(label$, “AH[0-9]*”)

Matches strings that contain the string “AH” followed by zero or more numbers

if index_regex(label$, “AH[0-9]+”)

Matches strings that contain the string “AH” followed by one or more numbers

Regex Appendix
if index_regex(label$, “^[PTK][AEIOU][MN][A-Z]+”)

Matches strings that start with either P, T, or K,
followed by either A, E, I, O, U,
followed by either M or N,
followed by at least one or more letters (+)

if index_regex(label$, “^[PTKCBDG][^AEIOUHW]”)
Matches strings that start with P, T, K, C, B, D, G
and are not followed by A, E, I, O, U, W, or H
This might match English words that begin with a consonant cluster
(CLOAK, TRAVELER) – note there are many equivalent ways to writing these

Regex Appendix
if index_regex(label$, “AH[0-9]”) or index_regex(label$, “Y$”)

Matches strings that contain the string “AH” followed by exactly one number
Or strings that end in “Y”

if index_regex(label$, “THE”) & !index_regex(label$, “Y$”)

Matches strings that contain the string “THE” but do not end in “Y”
(This would exclude words like “THEY” or “APOTHECARY”)

